

ПО «HLA-Эксперт»

Руководство пользователя

Содержание

1 Назначение программы	3
1.1 Функции HLA-Эксперт	3
1.2 Информационная безопасность	3
2 Условия выполнения программы	4
2.1 Аппаратное обеспечение	4
2.2 Программное обеспечение	4
2.3 Уровень подготовки пользователя	
3 Установка и обновление программы	
3.1 Установка HLA-Эксперт (ОС Windows)	6
3.2 Установка HLA-Эксперт (ОС семейства Unix)	6
3.3 Обновление НLА-Эксперт	7
3.3.1 Обновление программного обеспечения НLА-Эксперт	7
3.3.2 Обновление базы данных IPD-IMGT/HLA	8
3.4 Настройка параметров HLA-Эксперт	8
3.4.1 Настройка темы HLA-Эксперт	9
4 Выполнение программы	11
4.1 Запуск программы	11
4.2 Загрузка файлов образцов в HLA-Эксперт	12
4.2.1 Статусы обработки файлов образцов	13
4.2.2 Переход к просмотру результатов обработки файла образцов	13
4.2.3 Поиск файла образца	14
4.2.4 Настройка отображения перечня файлов образцов	15
4.2.5 Добавление файла образца в перечень	18
4.2.6 Обновление перечня файлов образцов	19
4.2.7 Настройка фильтрации файлов образцов	19
4.2.8 Контроль качества файлов образцов	20
4.2.9 Анализ качества данных файлов FASTQ	21
4.2.10 Распаковка gz-архивов файлов данных	22
4.3 Проведение обработки файлов образцов	23
4.3.1 Запуск обработки одного файла образца	23
4.3.2 Запуск обработки нескольких файлов образцов	24
4.3.3 Запуск обработки всех загруженных файлов образцов	24
4.3.4 Проведение обработки файла образца	24
4.3.5 Остановка обработки файла образца	26

4.3.6 Повторный запуск обработки файла образца	27
4.4 Работа с результатами типирования	28
4.4.1 Просмотр результатов	28
4.4.2 Просмотр формы статистики	30
4.4.3 Обновление результатов	43
4.4.4 Редактирование атрибутов образца	43
4.4.5 Печать результатов	44
4.5 Операции с файлами результатов	44
4.5.1 Экспорт результатов типирования в файл формата *.csv	45
4.5.2 Экспорт результатов типирования в файл формата *.xlsx	46
4.5.3 Параметры экспорта	46
4.6 Завершение работы с HLA-Эксперт	47
4.7 Удаление HLA-Эксперт	48
4.8 Техническая поддержка	48
4.8.1 Отправка сообщения в Службу клиентской поддержки	48
5 Адрес для обращений	50
Приложение А	51
Перечень сокращений	52

1 Назначение программы

Программное обеспечение HLA-Эксперт предназначено для получения результатов типирования генов HLA I (HLA-A, HLA-B, HLA-C) и II (HLA-DRB1, HLA-DPB1, HLA-DQB1, HLA-DRB3/4/5) классов, полученных методом высокопроизводительного секвенирования на платформе Illumina с использованием набора реагентов для подготовки библиотек фрагментов ДНК генов HLA I и II классов для генотипирования высокопроизводительным секвенированием (NGS) HLA-Эксперт.

Перечень национальных стандартов, применяемых к HLA-Эксперт, представлен в <u>Приложении А</u> данного руководства.

1.1 Функции HLA-Эксперт

Программное обеспечение HLA-Эксперт обеспечивает выполнение следующих функций:

- выбор файлов данных в формате *.fastq для обработки;
- настройка отображения параметров файлов для обработки;
- запуск обработки файлов;
- просмотр результатов типирования;
- печать результатов типирования;
- экспорт результатов типирования.

1.2 Информационная безопасность

В HLA-Эксперт не осуществляется хранение и обработка персональных данных, таким образом к данной программе не применимы нормы и требования по защите персональных данных.

В НLА-Эксперт не предусмотрены встроенные средства защиты от несанкционированного доступа (НД) и от копирования. Защита от НД осуществляется стандартными средствами операционной системы (ОС), а именно настройкой прав пользователей на доступ к программному обеспечению.

2 Условия выполнения программы

Корректное функционирование НLА-Эксперт возможно при соблюдении минимальных требований к аппаратному и общесистемному программному обеспечению персонального компьютера.

Рекомендуется обеспечить подключение персонального компьютера пользователя к сети Интернет. Наличие подключения позволит пользователю обновлять базу данных IPD-IMGT/HLA и отправлять сообщения в Службу клиентской поддержки. Данный функционал расширяет возможности программы, но не является основным, таким образом наличие сети Интернет – целесообразное, но не обязательное условие корректного функционирования программы.

2.1 Аппаратное обеспечение

Минимальные требования к аппаратному обеспечению приведены в таблице 1.

Таблица 1 – Требования к аппаратному обеспечению

Наименование	Требование
Количество и тип процессоров	8-ядерный процессор или 4-ядерный с гиперпоточностью
Объем оперативной памяти	16 ГБ
Дисковая подсистема	Жесткий диск с интерфейсом IDE или SATA и емкостью 100 ГБ
Сетевой контроллер	Fast Ethernet (100 Мбит/с)
Графический контроллер	Работа с разрешением 1280х960
Видеомонитор	ЖК-монитор с рабочим разрешением не менее 1280х960
USB-разъем	Требуется наличие свободного порта в компьютере, соответствующего стандарту USB 2.0 High-speed
Клавиатура	Требуется наличие русифицированной клавиатуры, совместимой с ПК пользователя
«Мышь»	Требуется наличие двухкнопочной «мыши»

2.2 Программное обеспечение

Минимальные требования к программным средствам (ПС), обеспечивающим выполнение HLA-Эксперт, представлены в таблице 2.

Таблица 2 – Минимальные требования к программному обеспечению

Наименование	Требование
OC	MS Windows 7 (и выше), ОС Ubuntu 18.04 (и выше), Astra Linux Special Edition 1.7, Astra Linux Common Edition 2.12

Наименование	Требование
Среда выполнения Java	OpenJDK версии 11

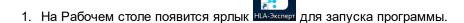
2.3 Уровень подготовки пользователя

Пользователь HLA-Эксперт должен обладать следующими необходимыми знаниями и навыками для работы с программой:

- знание предметной области и положений нормативных и руководящих документов;
- практические навыки работы с ПК;
- практические навыки работы с графическим пользовательским интерфейсом ОС MS Windows.

Перед началом работы с программным обеспечением HLA-Эксперт необходимо ознакомиться с данным Руководством пользователя.

ВНИМАНИЕ! Программное обеспечение предназначено только для совместного применения с набором реагентов «НLA-Эксперт». Рекомендуется пройти обучение. Контактные данные Службы клиентской поддержки представлены в разделе 5 данного руководства.


3 Установка и обновление программы

3.1 Установка HLA-Эксперт (OC Windows)

Для установки HLA-Эксперт в операционной среде Windows выполните нижеописанные действия.

- 1. Запустите установочный файл программного обеспечения HLA-Эксперт 2.0 для Windows.
 - Примечание. Установочный файл поставляется на USB-флэш-накопителе, также может быть получен по сети Интернет.
 - На экране отобразится окно с выбором языка, на котором будет выполняться установка программы. С помощью раскрывающегося списка выберите вариант Русский/English и нажмите кнопку [OK].
- 2. На экране отобразится окно с выбором каталога для установки HLA-Эксперт. По умолчанию указывается папка «HLAExpert» в каталоге «DNA-Technology» диска С:\. Для изменения каталога установки используйте кнопку [Обзор...].
 - Нажмите кнопку [Далее]. На экране отобразится окно с подтверждением создания нового каталога. Нажмите кнопку [Да].
- 3. Для создания ярлыка программы на Рабочем столе установите флаг выбора в строке «Создать значок на Рабочем столе». Нажмите кнопку [Далее].
- 4. Мастер установки сообщит о готовности начать установку программы HLA-Эксперт. Проверьте выбранные ранее параметры (папка установки, папка в меню «Пуск», создание ярлыка на Рабочем столе) и нажмите кнопку [Установить]. На экране отобразится процесс установки HLA-Эксперт. По завершении процесса установки в окне Мастера отобразится соответствующее сообщение.
- 5. Нажмите кнопку [Завершить] для выхода из Мастера установки.

В результате установки НLА-Эксперт на ПК пользователя:

2. В меню Пуск отобразится каталог «DNA-Technology», содержащий ярлык для запуска программы HLA-Эксперт.

3.2 Установка HLA-Эксперт (ОС семейства Unix)

Для установки HLA-Эксперт в ОС семейства Unix выполните нижеописанные действия.

- 1. Загрузите архив установочных файлов приложения НLА-Эксперт.
- 2. Создайте отдельный каталог для размещения файлов программы.
- 3. Распакуйте архив вместе с подкаталогами в данный каталог.

Основным исполняемым файлом программы «HLA-Эксперт» является HLAExpert.jar.

© 2023 ООО «ДНК-Технология ТС»

3.3 Обновление HLA-Эксперт

В программе реализовано два вида обновлений:

- 1. Обновление программного обеспечения НLА-Эксперт.
- 2. Обновление базы данных IPD-IMGT/HLA.

Для настройки автоматического получения обновлений необходимо связаться со Службой клиентской поддержки и получить файл с параметрами обновлений. В данном файле содержится уникальная учетная запись для подключения к серверу обновлений.

При первом запуске обновлений на экране отобразится окно, проиллюстрированное на рисунке 1. С помощью кнопки выберите нужный файл и нажмите кнопку [Продолжить]. Дальнейшие действия описаны в пп. 3.3.1, 3.3.2 данного руководства.

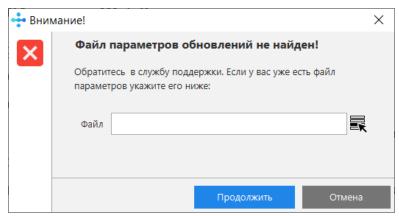


Рисунок 1 – Окно выбора файла с параметрами обновлений

Примечание. Новая версия ПО HLA-Эксперт может быть доступна после внесения изменений в комплект документации регистрационного досье в Росздравнадзоре в установленном порядке.

3.3.1 Обновление программного обеспечения HLA-Эксперт

Для обновления программы в меню «Сервис» выберите пункт «Обновление программы».

При наличии обновления на экране отобразится окно с соответствующим сообщением. Для запуска обновления нажмите кнопку [Да] в данном окне.

С сервера будет загружено обновление НLA-Эксперт, после чего на экране отобразится окно с сообщением о продолжении процесса установки обновления. Нажмите кнопку [Да]. Запустится процесс обновления программы, по завершении которого на экране отобразится окно с лог-сообщением о выполнении операций по обновлению файлов программы и окно об успешной установке программного модуля. Нажмите кнопку [Закрыть], после чего HLA-Эксперт будет перезапущен автоматически.

3.3.2 Обновление базы данных IPD-IMGT/HLA

Для обновления базы данных IPD-IMGT/HLA выберите пункт «Обновление файлов данных IMGT/HLA» меню «Сервис».

На экране отобразится окно со списком БД (рисунок 2). Выберите компонент и нажмите кнопку [Установить]. Напротив уже установленных компонентов будет отображаться статус «Установлено».

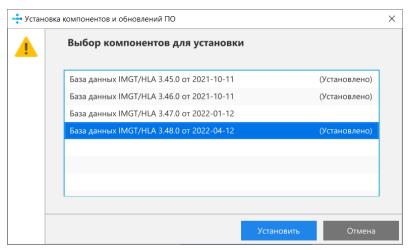


Рисунок 2 – Выбор компонентов для установки БД

Подтвердите свой выбор в открывшемся окне, после чего на экране отобразится сообщение об успешной установке.

3.4 Настройка параметров HLA-Эксперт

Для настройки параметров HLA-Эксперт выберите пункт «Параметры приложения» в меню «Сервис».

На экране отобразится окно с параметрами HLA-Эксперт (рисунок 3).

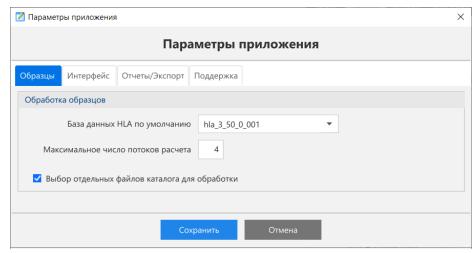


Рисунок 3 – Настройка параметров приложения

Настройки сгруппированы на нескольких вкладках:

- 1. «Образцы»:
 - код актуальной версии HLA переключение между версиями БД IPD-IMGT/HLA (по умолчанию выбрана последняя версия);
 - максимальное число потоков расчета;
 - выбор отдельных файлов каталога для обработки при установленном флаге пользователь сможет добавлять отдельные файлы для обработки, а не весь каталог целиком;

2. «Интерфейс»:

- полноэкранный режим при запуске приложения при установленном флаге выбора HLA-Эксперт после запуска будет отображаться во всю ширину Рабочего стола;
- вывод информационных сообщений в панели результатов;
- порядок сортировки генов поле для ввода последовательности генов через «;»;
- 3. «Отчеты/Экспорт»:
 - путь для сохранения файлов каталог, в котором будут сохраняться файлы с данными;
 - приложение для просмотра xlsx-файлов сторонняя программа, предназначенная для просмотра файлов указанного формата (например, Microsoft Excel);
 - приложение для просмотра docx-файлов сторонняя программа, предназначенная для просмотра файлов указанного формата (например, Microsoft Word);
- 4. «Поддержка» ввод параметров электронной почты пользователя для возможности использования сервиса отправки сообщений в Службу клиентской поддержки из ПО HLA-Эксперт (см. п. <u>5</u> данного руководства):
 - SMTP-сервер адрес сервера исходящей почты;
 - порт;
 - пользователь (email) адрес электронной почты пользователя;
 - пароль пароль электронной почты пользователя;
 - наименование организации.

После изменения параметров нажмите кнопку [Сохранить].

3.4.1 Настройка темы HLA-Эксперт

Программа HLA-Эксперт реализована в двух графических интерфейсах (темах). Переключение между ними осуществляется нижеописанным способом.

Откройте пункт «Темы» в меню «Сервис» и выберите интересующую вас тему: «Классическая» или «Светлая» (выбрана по умолчанию). Изменение интерфейса произойдет автоматически без перезапуска программы.

4 Выполнение программы

4.1 Запуск программы

Запуск программы HLA-Эксперт осуществляется одним из следующих способов:

1. B OC Windows:

- с помощью пункта «HLA-Эксперт» в меню «Пуск» (путь по умолчанию Пуск DNA-Technology).
- 2. В ОС семейства Unix:
 - запустив на выполнение файл HLAExpert.jar;
 - с помощью командной строки: >[Путь к папке Java Runtime Environment]\bin\java -jar HLAExpert.jar.

В результате загрузки на экране отобразится окно программы (рисунок 4).

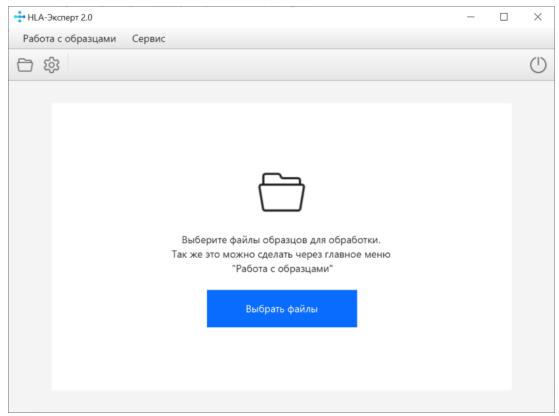


Рисунок 4 – Стартовое окно НLА-Эксперт

4.2 Загрузка файлов образцов в HLA-Эксперт

Получение результатов типирования осуществляется на основании файлов в формате *.fastq, содержащих сведения об исследуемых образцах.

Файлы необходимо получить с компьютера, управляющего прибором. За получением детальных инструкций о получении файлов в формате *.fastq, следует обратиться к эксплуатационной документации производителя, поставляемой с прибором.

Загрузка файлов образцов в HLA-Эксперт осуществляется одним из следующих способов:

- с помощью кнопки на панели инструментов;
- с помощью кнопки «Выбрать файлы», расположенной в рабочей области программы (данная кнопка доступна только при запуске программы);
- с помощью меню «Работа с образцами Обработка файлов образцов».

После выполнения одного из описанных действий на экране отобразится стандартное окно ОС для поиска и выбора нужных файлов. В данном окне откройте каталог с файлами образцов, выделите любой файл и нажмите кнопку [Открыть]. Все файлы из выбранного каталога будут загружены в программу.

Примечание. Для выборочной загрузки одного или нескольких файлов из каталога необходимо в настройках программы установить флаг в строке «Выбор отдельных файлов каталога для обработки» (см. п. <u>3.4</u> данного руководства).

На экране отобразится окно «Выбор каталога результатов». При необходимости измените каталог, указанный по умолчанию, и нажмите кнопку [Выбрать].

Выбранные файлы отобразятся в НLА-Эксперт на новой вкладке в виде таблицы данных (рисунок 5).

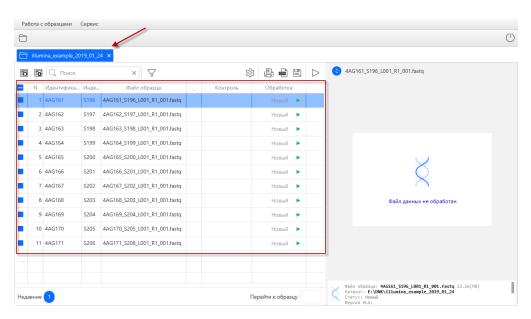


Рисунок 5 – Отображение файлов, загруженных в НLА-Эксперт

Примечание. В перечне отображаются только файлы с суффиксом R1, при этом соответствующие им файлы с суффиксом R2 загружаются в программу автоматически, но не отображаются в общем перечне.

Для каждого файла образца отображаются следующие данные:

- порядковый номер в текущем перечне;
- идентификатор образца;
- индекс;
- значок по результатам обработки файла:
 - \triangle предупреждение о необходимости дополнительного контроля гена;

 - Н возможен новый аллель;
 - 🔍 в результатах присутствуют аллели с уникальными последовательностями экзонов;
 - 🗓 ошибка (типировано более 2-х аллелей, возможна контаминация);
- наименование файла;
- данные контроля качества файла;
- статус обработки файла.

Примечание. Настройка данных, отображающихся в столбцах «Идентификатор» и «Индексы», описана в п. <u>4.2.4</u> данного руководства.

4.2.1 Статусы обработки файлов образцов

Возможные статусы обработки файла:

- «Новый» файл только что загружен, обработка не выполнялась;
- «Обработан» обработка файла успешно завершена;
- «Ожидание» файл в очереди на обработку;
- «Ошибка» возникла ошибка при обработке файла или обработка файла была остановлена пользователем.

4.2.2 Переход к просмотру результатов обработки файла образцов

Ниже перечня загруженных файлов отображается экспресс-панель для быстрого перехода к просмотру результатов последних просмотренных файлов (рисунок 6).

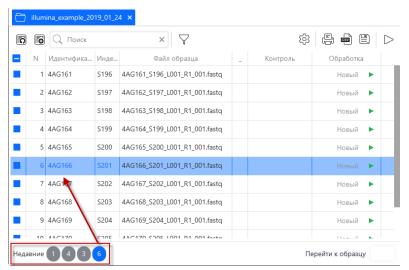


Рисунок 6 – Экспресс-панель для перехода к просмотру результатов обработки

Данная экспресс-панель содержит порядковые номера десяти недавно просмотренных файлов образцов, при этом текущий открытый файл выделяется цветом.

Дополнительно в программе реализована возможность быстрого перехода к определенному файлу – для этого введите порядковый номер нужного файла в поле «Перейти к образцу» и нажмите клавишу <Enter>. Программа выделит указанный файл в перечне и отобразит результат его обработки, если типирование уже было проведено (рисунок 7).

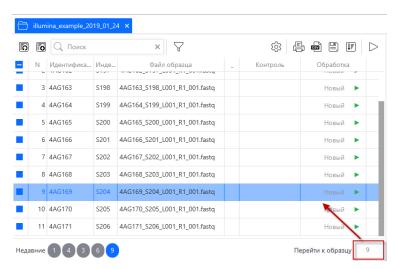


Рисунок 7 – Пример перехода к образцу

4.2.3 Поиск файла образца

Поиск файла образца осуществляется по частичному соответствию введенных данных искомым параметрам.

Для поиска нужного файла образца введите искомый фрагмент названия объекта в текстовое поле, расположенное над реестром файлов образцов, и нажмите клавишу <Enter>. Строка с файлом образца, отвечающему параметру поиска, будет выделена (рисунок 8).

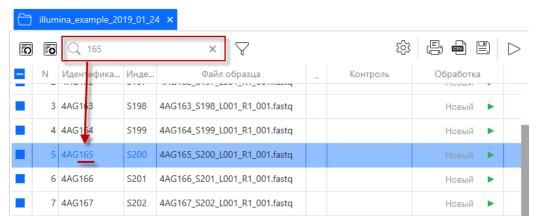


Рисунок 8 – Пример выполнения поиска файла образца

4.2.4 Настройка отображения перечня файлов образцов

В HLA-Эксперт реализована возможность настройки сведений, которые отображаются в перечне файлов образцов в столбцах «Идентификатор» и «Индексы» (рисунок 9).

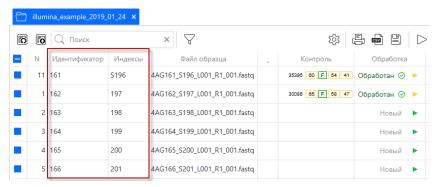


Рисунок 9 - Столбцы с настраиваемым содержимым

Сведения для данных столбцов берутся из имени файла образца и заполняются автоматически, согласно заданным настройкам.

Для настройки параметров отображения нажмите кнопку над реестром файлов. На экране отобразится окно редактирования параметров просмотра (рисунок 10).

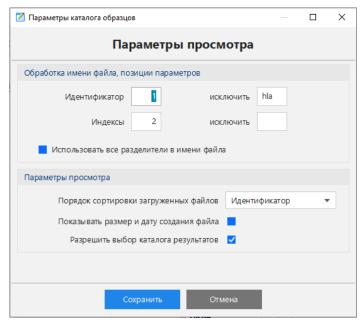


Рисунок 10 - Окно редактирования параметров просмотра

Для **настройки идентификатора образца** укажите номер позиции в имени файла, содержащей идентификатор образца. В поле «исключить» укажите данные, которые присутствуют на указанной позиции, но не являются частью идентификатора (рисунок 11).

Пример. Предположим, есть файл образца с именем «4AG161_S196_L001_R1_001», его идентификатор – «161». Как видно из имени файла идентификатор расположен в самом начале, в комбинации «4AG161». Символ «_» разделяет имя файла на условные позиции (также возможно использование символа «-»). Комбинация «4AG161» – первая позиция. Таким образом, в поле «Идентификатор» указываем значение «1», а так как «4AG» не является частью идентификатора, в поле «исключить» указываем «4AG». После сохранения настроек в столбце «Идентификатор» для данного файла образца будет указано «161».

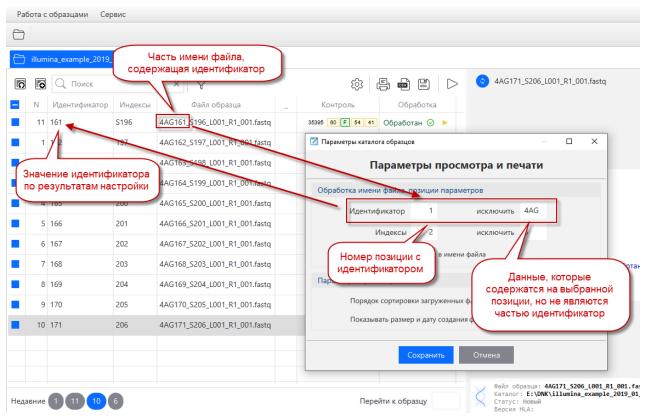


Рисунок 11 – Настройка идентификатора

Настройка столбца «Индексы» осуществляется аналогично настройке идентификатора (рисунок 12). Если для любого из параметров указать значение «0», то выводиться он не будет.

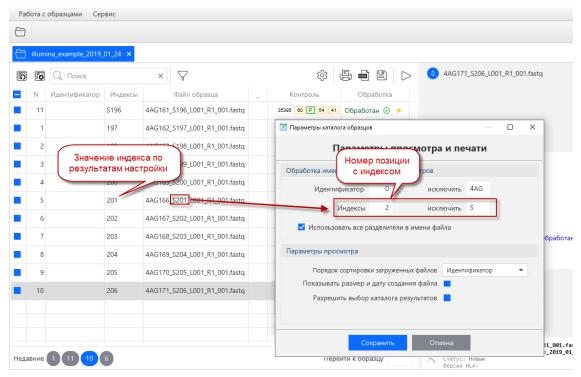


Рисунок 12 - Настройка индексов

«Порядок сортировки загруженных файлов» позволяет выбрать между сортировкой по идентификаторам и сортировкой по индексам.

«Показывать размер и дату создания файла» добавляет в колонке имени файла информацию о его размере и дате создания файла.

«Разрешить выбор каталога результатов» позволяет выбирать каталог для хранения результатов расчета. Если данная настройка не установлена, данные результатов расчетов хранятся в каталоге исходных файлов образцов – *.fastq.

4.2.5 Добавление файла образца в перечень

Для добавления файла образца в сформированный перечень нажмите кнопку оправодения файлов (рисунок 13).

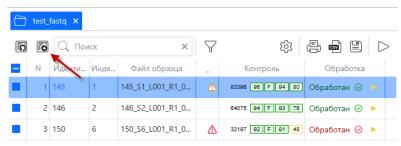


Рисунок 13 – Кнопка для добавления файла образца

На экране отобразится стандартное окно ОС для поиска и выбора файлов. Укажите нужный файл образца и нажмите кнопку [Открыть]. Выбранный файл отобразится в общем перечне.

4.2.6 Обновление перечня файлов образцов

Для обновления перечня файлов образцов нажмите кнопку , расположенную над реестром файлов. После чего данные в перечне будут обновлены.

4.2.7 Настройка фильтрации файлов образцов

В НLА-Эксперт реализована возможность фильтрации загруженных файлов образцов.

Для настройки фильтра нажмите кнопку над реестром файлов образцов (рисунок 14).

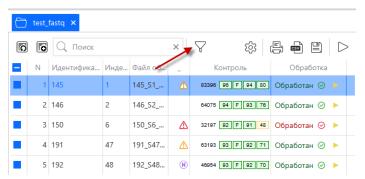


Рисунок 14 – Кнопка для настройки параметров фильтрации

На экране отобразится окно с параметрами фильтрации (рисунок 15).

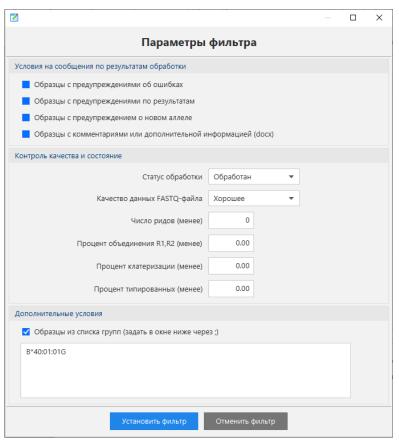


Рисунок 15 – Параметры фильтрации файлов образцов

Установите параметры фильтрации, используя предоставленные настройки.

Нажмите кнопку [Установить фильтр]. В реестре файлов образцов отобразятся только те записи, что полностью соответствуют заданным параметрам (рисунок 16).

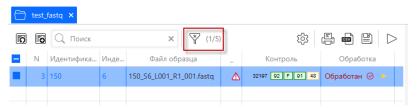


Рисунок 16 – Пример настройки фильтрации

Чтобы снять параметры фильтрации, нажмите кнопку . На экране отобразится окно с параметрами фильтрации файлов образцов, нажмите кнопку [Отменить фильтр]. В перечне файлов вновь отобразятся все загруженные файлы образцов без ограничений.

4.2.8 Контроль качества файлов образцов

При обработке образца файла осуществляется контроль качества данного файла. Критериями качества выступают:

- количество ридов в образце;
- процент объединения R1 и R2;
- качество данных FASTQ файла;
- процент кластеризованных ридов;
- процент ридов, использованных в результатах типирования.

Данные о качестве отображаются непосредственно в строке с записью о файле в столбце «Контроль». При наведении курсора на значение параметра на экране отобразится всплывающая подсказка с детальной информацией по результатам контроля (рисунок 17).

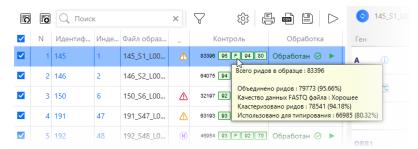


Рисунок 17 – Просмотр результатов контроля качества

Параметр «Качество данных FASTQ файла» определяет средневзвешенное качество чтения позиций в ридах FASTQ файла и может принимать значение: «хорошее», «среднее» или «плохое» (подробнее см. п. <u>4.2.9</u>).

4.2.9 Анализ качества данных файлов FASTQ

Для выполнения анализа вызовите контекстное меню для нужного файла образца (выделите запись о файле и нажмите правую кнопку мыши) и выберите нужный тип анализа (рисунок 18).

В программе реализованы следующие виды анализа файла FASTQ:

- анализ качества объединенного FASTQ файла (R1+R2);
- анализ качества FASTQ файла (R1);
- анализ качества FASTQ файла (R2).

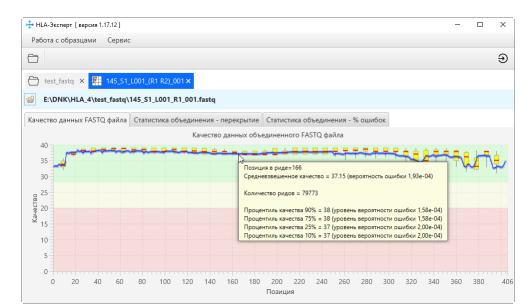



Рисунок 18 – Переход к анализу качества FASTQ файла

Данные с результатами анализа отобразятся на новой вкладке (рисунок 19).

Рисунок 19 - Просмотр анализа качества FASTQ файла

На диаграмме представлены средневзвешенные значения показателей качества чтения (Q) символов в ридах. Данные берутся из FASTQ файла. Уровнем значений хорошего качества считается Q>=28, среднего: 28>Q>20, плохого: Q<20.

Значение Q представлено по оси Y, по оси X – позиции символов в ридах.

Графические элементы диаграммы:

- синяя кривая средневзвешенное значение Q;
- желтый прямоугольник значение процентиля Q от 25 % до 75 %;
- черный отрезок значение процентиля Q от 10 % до 90 %
- красная метка среднее значение Q.

4.2.10 Распаковка gz-архивов файлов данных

Чтобы извлечь fastq-файлы из архива формата *.gz, выберите пункт «Распаковка gz-архивов» в меню «Сервис».

На экране отобразится окно с полями для выбора *.gz файла, а также каталога, в котором будут сохранены разархивированные файлы *.fastq (рисунок 20).

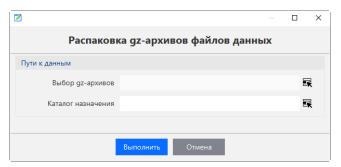


Рисунок 20 – Окно выбора исходного каталога и каталога назначения

Для выбора gz-архива нажмите кнопку , расположенную с одной строке с нужным полем. На экране отобразится стандартное окно ОС для поиска и выбора файлов. Перейдите к каталогу с нужными gz-архивами, выделите те из них, что необходимо разархивировать и нажмите кнопку [Открыть].

Запись пути до выбранных архивов, а также их количество отобразится в окне «Распаковка gz-архивов файлов данных» (рисунок 21).

Аналогичным образом укажите каталог, в котором будут сохранены разархивированные fastq-файлы (каталог назначения).

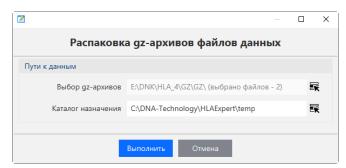


Рисунок 21 – Пример выбора каталогов

Нажмите кнопку [Выполнить].

На экране отобразится процесс распаковки архивов, а по его завершении – окно с сообщением об успешно выполненной операции.

Нажмите кнопку [Закрыть]. Извлеченные fastq-файлы сохранены в выбранном каталоге.

4.3 Проведение обработки файлов образцов

4.3.1 Запуск обработки одного файла образца

Для запуска обработки одного файла образца нажмите кнопку 🕨 в строке с нужным файлом (рисунок 22).

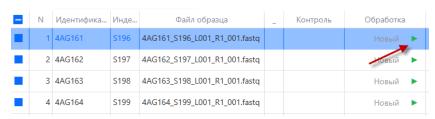


Рисунок 22 – Запуск обработки одного файла образца

4.3.2 Запуск обработки нескольких файлов образцов

Для запуска обработки нескольких файлов образцов выделите нужные файлы, установив флажок выбора в соответствующих строках таблицы, и нажмите кнопку на панели инструментов (рисунок 23).

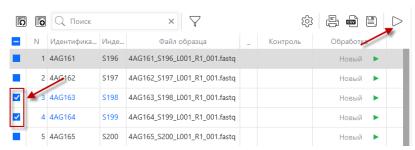


Рисунок 23 – Запуск обработки набора файлов

4.3.3 Запуск обработки всех загруженных файлов образцов

Для обработки всех файлов образцов нажмите кнопку, показанную на рисунке 24, после чего нажмите кнопку на панели инструментов, как в п. 4.3.2.

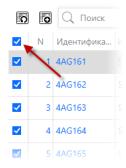


Рисунок 24 – Выбор всех доступных файлов образцов

4.3.4 Проведение обработки файла образца

После запуска обработки на экране отобразится окно с подтверждением запуска расчета данных по выбранному образцу или набору образцов (рисунок 25).

© 2023 ООО «ДНК-Технология ТС»

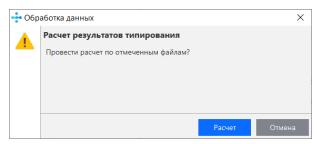


Рисунок 25 – Подтверждение запуска расчета данных

Подтвердите свой выбор, нажав кнопку [Расчет].

В окне программы отобразится процесс обработки каждого выбранного файла (и соответствующих им файлов R2) с указанием текущей операции (рисунок 26). Статус файла в реестре изменится на «В обработке».

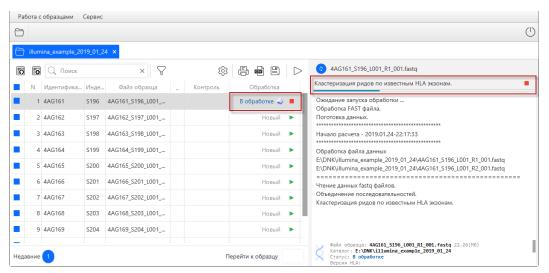


Рисунок 26 – Расчет данных для выбранного файла

По завершении обработки статус файла изменится на «Обработан», а в правой части рабочей области программы отобразится результат типирования (рисунок 27).

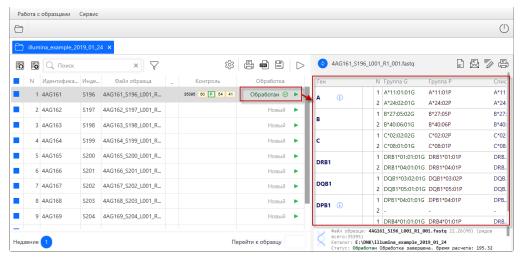


Рисунок 27 – Результат обработки файла

Также в строке с записью файла отобразятся результаты контроля качества файла (рисунок 28).

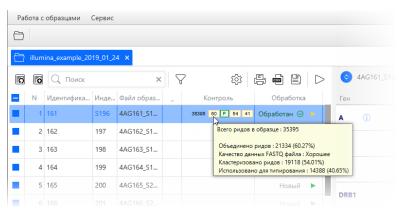


Рисунок 28 – Результаты контроля качества файла образца

После завершения обработки результаты типирования автоматически сохраняются в файлы формата *.csv в каталоге, установленном ранее при выборе файлов для обработки. Для каждого файла образца создаются свои файлы результатов.

4.3.5 Остановка обработки файла образца

Для остановки операции расчета нажмите кнопку в списке файлов (если обработка проводится для одного файла) или аналогичную кнопку в строке с процессом обработки файла. На экране отобразится окно с сообщением о подтверждении остановки операции расчета (рисунок 29).

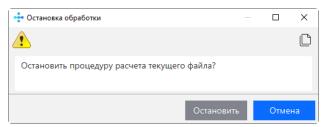


Рисунок 29 – Подтверждение остановки операции расчета файла

Подтвердите свой выбор, нажав кнопку [Остановить], после чего проведение обработки будет остановлено, а статус файла образца изменится на «Ошибка» (рисунок 30).

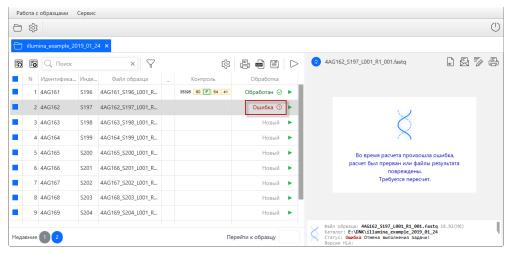


Рисунок 30 - Отмена обработки файла

4.3.6 Повторный запуск обработки файла образца

Для повторной обработки файла нажмите кнопку в строке с нужным файлом. Далее подтвердите свой выбор, нажав кнопку [Расчет] в появившемся окне (рисунок 31), после чего программа проведет обработку и отобразит результаты.

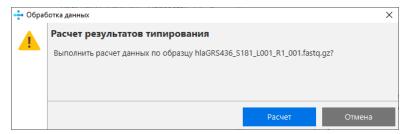


Рисунок 31 – Повторный запуск обработки файла образца

4.4 Работа с результатами типирования

4.4.1 Просмотр результатов

Результат проведения типирования отображается в правой части экрана для выбранного файла образца (рисунок 32).

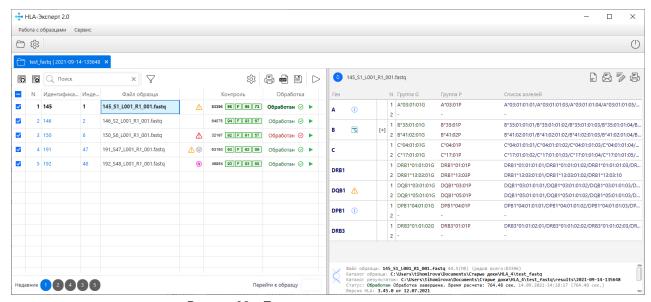


Рисунок 32 – Просмотр результатов типирования

Результаты генотипирования представлены в трех разных форматах.

Формат группы G

Группы, обозначаемые буквой «G», объединяют аллели, имеющие идентичные нуклеотидные последовательности экзонов, кодирующие антигенсвязывающие домены (экзоны 2 и 3 для аллелей HLA I класса и экзон 2 – для аллелей HLA II класса). Обозначенная группа содержит как минимум шесть цифр, а буква «G» следует за первыми 3 полями аллеля с наименьшим номером в группе (A*01:01:01G). Состав всех групп доступен на сайте международной ассоциации иммуногенетиков: www.hla.alleles.org/alleles/g_groups.html.

Формат группы Р

Группы, обозначаемые буквой «Р», объединяют аллели, имеющие нуклеотидные последовательности, которые кодируют одну и ту же последовательность белка для антигенсвязывающих доменов (экзоны 2 и 3 для аллелей HLA I класса и экзона 2 – для аллелей HLA II класса). Обозначенная группа содержит как минимум четыре цифры, а буква «Р» следует за первыми 2 полями аллеля с наименьшим номером в группе (А*01:01P). Состав всех групп доступен на сайте международной ассоциации иммуногенетиков: www.hla.alleles.org/alleles/p_groups.html.

Формат списка аллелей

© 2023 ООО «ДНК-Технология TC» 28

В данном формате отображаются все аллели, которые входят в группу G с уточнением дополнительных экзонов для HLA I/II классов. Уточнение по экзонам, не кодирующим антигенсвязывающий домен, позволяет отличить истинную гомозиготу от ложной гомозиготы в большом количестве случаев.

Значок (в строке с геном обозначает наличие информационного сообщения по аллелю (рисунок 33).

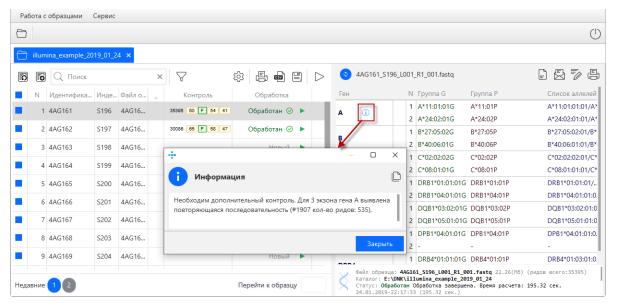


Рисунок 33 – Просмотр информационного сообщения по аллелю

Просмотр вариантов неоднозначности цис-транс положений

Гены, по которым найдены неоднозначности цис-транс положений, отмечены значком

Для просмотра вариантов необходимо нажать на [+] (рисунок 34).

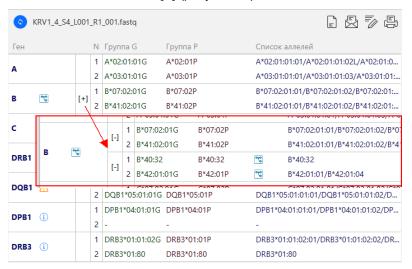


Рисунок 34 – Просмотр вариантов неоднозначности цис-транс положений

Просмотр списка аллелей для гена

30

Для просмотра списка аллелей одного из генов кликните указателем «мыши» на данный список, после чего он отобразится в отдельном окне (рисунок 35).

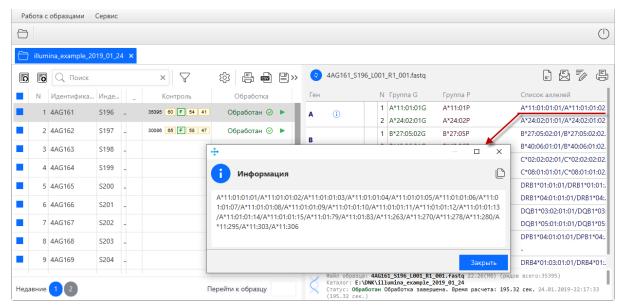


Рисунок 35 – Пример просмотра списка аллелей

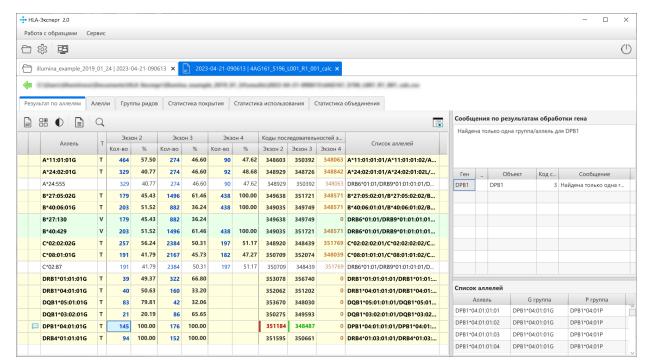
4.4.2 Просмотр формы статистики

Для просмотра статистических данных по конкретному образцу необходимо нажать кнопку результатами типирования. Откроется форма просмотра данных, содержащая несколько вкладок, на которых представлены промежуточные результаты этапов обработки файла.

Вкладка «Результат по аллелям»

На вкладке приведены результаты анализа распределения ридов по аллелям (рисунок 36), на основе которых проведен анализ (таблица 3).

© 2023 ООО «ДНК-Технология ТС»



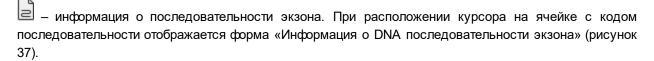

Рисунок 36 - Просмотр результатов по аллелям

Таблица 3 – Описание данных, представленных на вкладке «Результат по аллелям»

Колонка таблицы	Описание
	Отметка наличии Сообщений по результатам обработки гена
Аллель	Имя аллеля
Т	Указан признак типирования данного аллеля. Типированные строки подсвечены желтым фоном и имеют значение «Т».
	Для групп/аллелей, по которым есть неоднозначности цис. транс положения, в этой колонке выводится символ «V» в случае неоднозначности по группе с учетом 2-го и 3-го экзона для І-класса 2-го экзона для ІІ класса, и символ «М» в случае неоднозначности по группе с учетом 4-го экзона для І-класса и 3-го экзона для ІІ класса. Эти строки подсвечены зеленым фоном.
	В случае обнаружения фантомной последовательности экзомов (использования одной и той же последовательности в других генах) запись, не используемая в текущем гене, отмечается сиреневым фоном и в поле устанавливается значение «F».
	Для химерных последовательностей (последовательностей состоящих из частей других последовательностей) устанавливается значение «Н»
Экзон <i>## /</i> Кол-во	Выведено количество ридов, используемых для определения группы по экзону ## данного аллеля

Колонка таблицы	Описание
Экзон ## / %	Выведено процентное соотношение количества используемых ридов и общего количества кластеризованных ридов на экзон ## данного гена
Коды последовательностей экзонов Экзон ##	Код уникальной последовательности экзона ## в базе HLA аллелей, используемой в приложении
Список аллелей	Перечислены аллели, в которых встречается определенная комбинация 2-го и 3-го экзонов для генов I класса и 2-го экзонов для генов II класса

Элементы управления:

- установить/отменить экзон маску для сравнения. Используется для возможности сравнивать последовательности экзонов в выделенных строках с выравниванием на указанную последовательность.
- сравнение выделенных. Вызывается форма выравнивания последовательностей экзонов повыделенным ячейкам с кодами последовательностей (рисунок 38).
- = просмотр выравнивания групп ридов (рисунок 39).
- поиск по текущему столбцу.

Дополнительно на панели в правой части формы размещена таблица со списком с сообщений по результатам обработки гена и списком аллелей.

© 2023 ООО «ДНК-Технология ТС» 32

Рисунок 37 - Информация о последовательности экзона

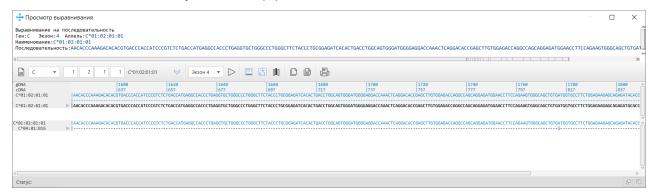


Рисунок 38 – Выравнивание последовательностей экзонов по выделенным ячейкам с кодами последовательностей

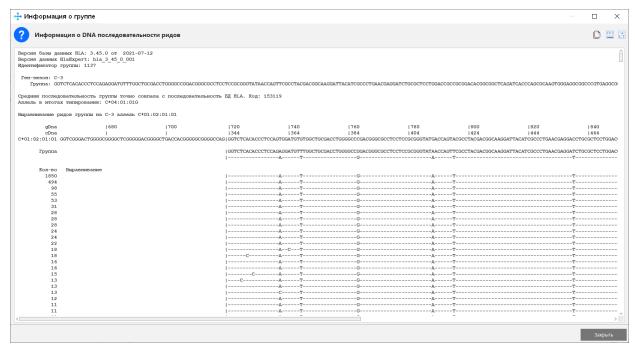


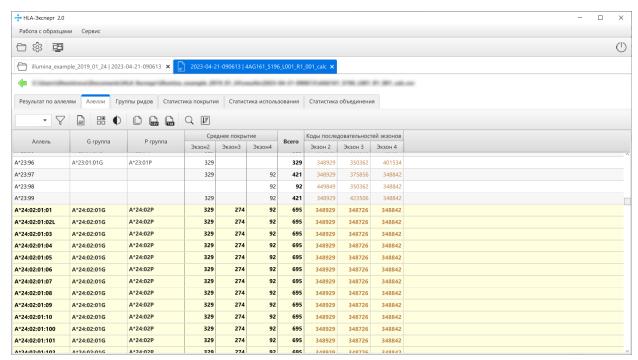
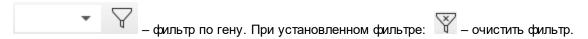
Рисунок 39 – Просмотр выравнивания групп ридов

Кнопки для настройки отображения данных:

- = стиль вывода: последовательность или кодоны;
- _ тип вывода: выравнивание или последовательность ДНК.

Вкладка «Аллели»

Вкладка содержит таблицу (рисунок 40), в которой приведены данные вычисления точных совпадений ридов с экзонами и объединения их в аллели (таблица 4).

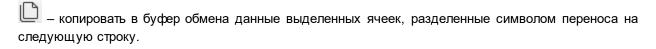

Рисунок 40 - Просмотр вкладки «Аллели»

Таблица 4 – Описание данных, представленных на вкладке «Аллели»

Колонка таблицы	Описание
Аллель	Имя аллеля
G группа	Указана G группа, к которой принадлежит аллель. Если группы нет, то выводится пустая ячейка
Р группа	Указана Р группа, к которой принадлежит аллель. Если группы нет, то выводится пустая ячейка
Среднее покрытие/ Экзон ##/	Выведено среднее покрытие по экзону ## данного аллеля
Всего	Выведено количество учитываемых ридов по всем экзонам данного аллеля
Коды последовательностей/ Экзон ##	Код уникальной последовательности экзона ## в базе HLA-аллелей, используемой в приложении

Элементы управления:

- _____ копировать в буфер обмена данные выделенных ячеек, разделенные символом «;».
- копировать в буфер обмена данные выделенных ячеек, разделенные символом табуляции.
- поиск по текущему выбранному столбцу.
- _ сортировка записей по возрастанию или по убыванию.

Вкладка «Группы ридов»

На вкладке «Группы ридов» представлена таблица (рисунок 41), в которой приведены данные выравнивания ридов.

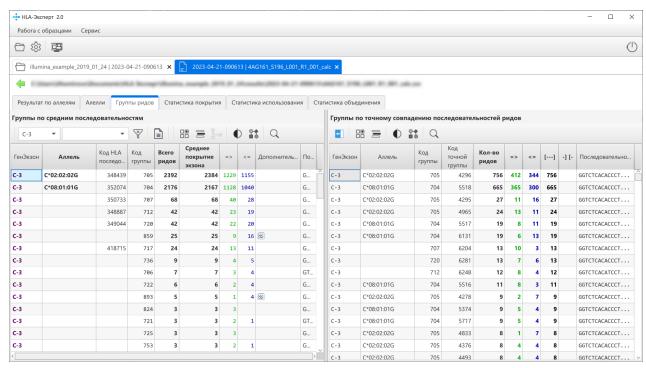


Рисунок 41 – Просмотр вкладки «Группы ридов»

Информация на вкладке состоит из двух таблиц – «Группы по средним последовательностям» (таблица 5) и «Группы по совпадению последовательностей ридов» (таблица 6).

Таблица 5 – Описание данных, представленных в таблице «Группы по средним последовательностям»

Колонка таблицы	Описание
ГенЭкзон	Выведено имя гена и номер экзона

© 2023 ООО «ДНК-Технология TC» 36

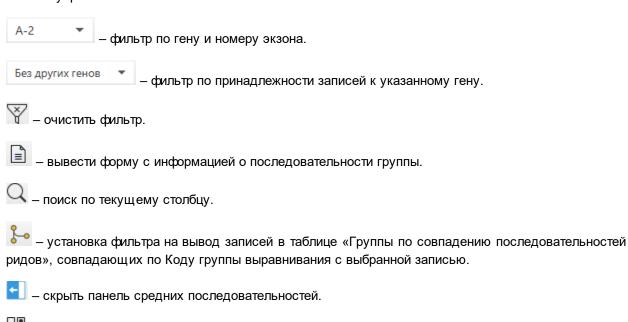

Колонка таблицы	Описание
Аллель	Выводится значение аллеля, в случае если группа участвует в типировании
Код HLA- последовательности	Код совпадающей последовательности в базе аллелей HLA, используемой в приложении
Код группы	Идентификатор выбранной группы ридов
Всего ридов	Количество ридов выбранной группы
Среднее покрытие экзона	Среднее покрытие экзона выбранной группы ридов
=>	Количество прямых ридов в группе
<=	Количество обратных ридов в группе
Дополнительно	Дополнительные отметки неиспользуемых групп ридов: {Шум} – группа ридов, выделенных из других групп, с превышением уровня расхождения со средней последовательностью группы более установленного порога; {Химера} – группа ридов, у которых последовательность состоит из двух частей других последовательностей, которые уже присутствуют в результате;
Последовательность группы	Нуклеотидная последователь группы

Таблица 6 – Описание данных, представленных в таблице «Группы по совпадению последовательностей ридов»

Колонка таблицы	Описание
Ген-экзон	Выведено имя гена и номер экзона
Аллель	Выводится значение аллеля, в случае если группа участвует в определении результата типирования
Код группы	Код группы из таблицы «Группы по средним последовательностям»
Код точной группы	Код группы по точному совпадению последовательностей ридов
Количество ридов	Количество ридов в группе
=>	Количество прямых ридов в группе
<=	Количество обратных ридов в группе
[]	Количество объединенных ридов в группе

Колонка таблицы	Описание
-][-	Количество необъединенных ридов в группе
Длина	Длина последовательности группы
Последовательность	Нуклеотидная последовательность группы

Элементы управления:

- установить/отменить маску для сравнения. Используется для возможности сравнивать последовательности в выделенных строках с выравниванием на выбранную запись с последовательностью группы.
- сравнение выделенных. Вызывается форма выравнивания последовательностей групп по выделенным ячейкам.
- = выделить все записи группы. Для текущей записи группы выделяются все соответствующие ей записи групп в таблице «Группы по совпадению последовательностей ридов».
- поиск ближайших аллелей. Происходит поиск аллелей по базе данных IMGT/HLA в которые входит последовательность из текущей записи группы с количеством возможных расхождений не более 5. Результат выводится в отдельную вкладку (рисунок 43).

© 2023 ООО «ДНК-Технология TC»

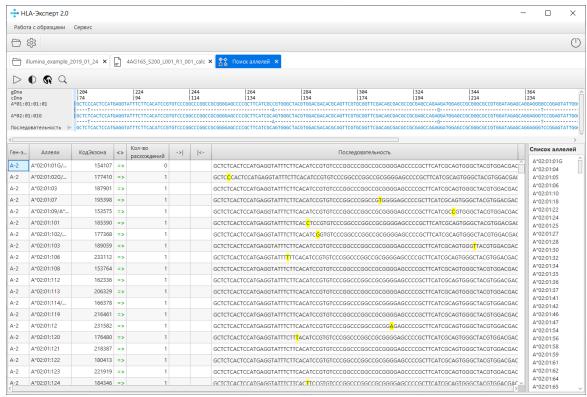


Рисунок 42 – Поиск ближайших аллелей

Элементы управления:

– выполнить поиск аллелей. Вызывается форма ввода последовательности для поиска (рисунок 44).

сравнение выделенных последовательностей. Вызывается форма выравнивания последовательностей по выделенным ячейкам.

🔐 – открыть NCBI BLAST+. При наличии сети Интернет в браузере откроется сайт:

www.ebi.ac.uk/Tools/services/web_ncbiblast/toolform.ebi?tool=ncbiblast&context=nucleotide&database=imgthla

– поиск по текущему столбцу.

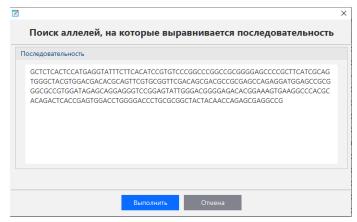


Рисунок 43 – Окно ввода последовательности для поиска

Вкладка «Статистика покрытия»

На данной вкладке представлен график покрытия – по оси «Х» отображается порядок нуклеотидов в последовательности, по оси «Y» число ридов, содержащих определенный нуклеотид в типированном аллеле либо в неучтенных ридах. Совпадающие нуклеотиды отражаются серым цветом, различающиеся – разноцветными. В левой части вкладки представлена таблица с числовыми значениями, которые используются для вывода графика. При выборе записи в таблице на графике появляется курсор-линия в соответствующей позиции (рисунок 45).

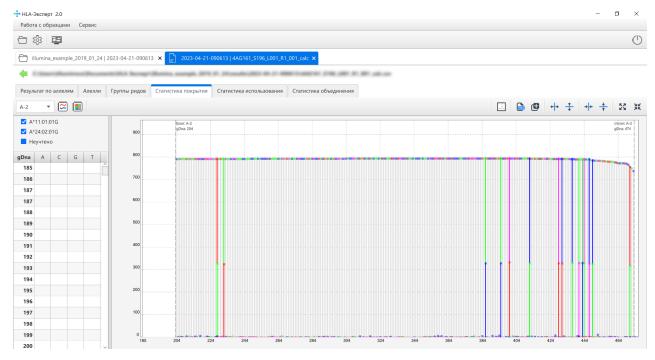


Рисунок 44 – Просмотр вкладки «Статистика покрытия»

Вкладка «Статистика использования»

Информация на вкладке представлена в виде двух таблиц — «Статистика учета ридов по экзонам» (таблица 7) и «Общая статистика использования ридов» (таблица 8), а также гистограммы,

отражающей количественные данные «Кластеризовано/Всего», «Неоднозначно» и «Использовано в типировании» (рисунок 46).

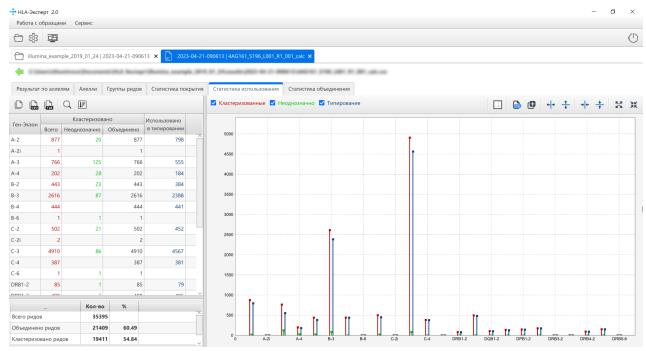


Рисунок 45 – Просмотр вкладки «Статистика использования»

Таблица 7 – Описание данных, представленных в таблице «Статистика учета ридов по экзонам»

Колонка таблицы	Описание
Ген-Экзон	Выведено имя гена и номер экзона
Кластеризовано \ Всего	Количество кластеризованных на указанный ген-экзон ридов
Кластеризовано \ Неоднозначно	Количество ридов кластеризованных в том числе и на другие гены (кроссмаппинг)
Кластеризовано \ Объединено	Количество объединенных ридов
Использовано в типировании	Количество ридов, использованных в определении результата типирования

Таблица 8 – Описание данных, представленных в таблице «Общая статистика использования ридов»

Колонка таблицы	Описание
_	Наименование показателя
Кол-во	Количество ридов

Колонка таблицы	Описание
%	Процентное соотношение показателя от общего количества ридов в образце

Кнопки на панели инструментов гистограммы:

- отображать/не отображать выбранные данные.
- 🔲 включить/выключить пунктирные линии и координаты указателя.
- b сохранить график в файл формата *.png.
- _ копировать график в буфер обмена.
- + → + → + → − масштабирование графика по вертикали и горизонтали.
- установить масштаб по выделенной области.
- сбросить масштабирование.

Вкладка «Статистика объединения»

На данной вкладке представлено два графика: на одном отображается количество ридов для различных длин перекрытия, на втором – количество ридов для различного % ошибок (рисунок 47).

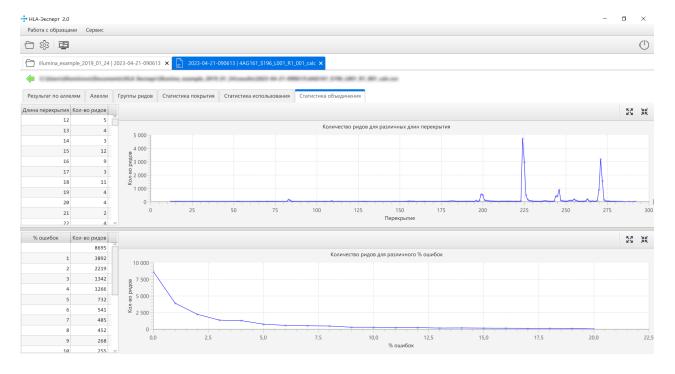


Рисунок 46 - Просмотр вкладки «Статистика объединения»

4.4.3 Обновление результатов

Для обновления результатов типирования используйте кнопку , расположенную над таблицей результатов (рисунок 48).

Рисунок 47 – Обновление результатов проведения типирования

4.4.4 Редактирование атрибутов образца

В НLА-Эксперт предусмотрены следующие атрибуты файла образца:

- идентификатор образца;
- индекс;
- комментарий.

Для редактирования данных атрибутов выполните нижеописанные действия.

1. Нажмите кнопку над результатами обработки файлов образцов. На экране отобразится форма редактирования атрибутов образца (рисунок 49).

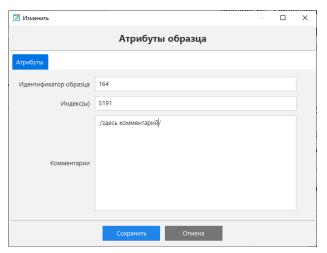


Рисунок 48 – Форма редактирования атрибутов образца

2. Внесите необходимые изменения в соответствующие поля формы.

3. Нажмите кнопку [Сохранить].

Внесенные изменения будут сохранены. Данные атрибуты отображаются при печати файла результата типирования (рисунок 50).

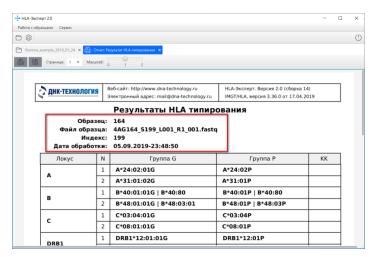


Рисунок 49 – Пример отображения атрибутов результатов типирования для печати

4.4.5 Печать результатов

Для печати результата типирования нажмите кнопку расположенную над таблицей результатов.

На экране отобразится форма предварительного просмотра.

Для печати данных нажмите кнопку в верхней части формы. Чтобы сохранить данные в pdf-файл нажмите кнопку

4.5 Операции с файлами результатов

Итоговая информация о результатах типирования образцов сохраняется в файлах результатов. Реализованные операции с файлами результатов обеспечивают фиксацию результата на бумажном носителе, а также реализуют способы передачи информации (обмена) в вышестоящие системы (например, лабораторные информационные системы) посредством передачи файлов. Реализованные способы передачи не являются исчерпывающими. Возможна доработка механизмов передачи информации (обмена) для конкретных решений.

В настоящий момент в НLА-Эксперт предусмотрены следующие операции с файлами результатов:

- экспорт результатов типирования в файл формата *.csv;
- печать результатов;
- параметры экспорта результатов.

Далее каждая операция рассмотрена более подробно.

4.5.1 Экспорт результатов типирования в файл формата *.csv

Для записи результатов типирования всех обработанных файлов образцов в один файл формата *.csv выполните нижеописанные действия.

1. Нажмите кнопку над перечнем файлов образцов (рисунок 50).

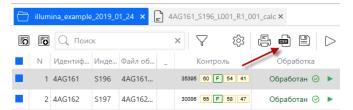


Рисунок 50 – Переход к экспорту результатов типирования

На экране отобразится окно для ввода имени и пути сохранения создаваемого csv-файла (рисунок 51).

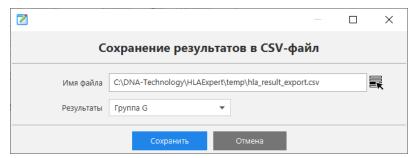


Рисунок 51 – Имя и путь сохранения сsv-файла

2. В поле «CSV файл данных» отображается имя и системный путь до создаваемого файла. В случае необходимости отредактируйте автоматически сформированные данные.

Укажите данные, которые должны быть экспортированы, с помощью раскрывающегося списка в строке «Результаты».

3. Нажмите кнопку [Сохранить].

На экране отобразится окно с указанием системного пути до созданного csv-файла (рисунок 52).

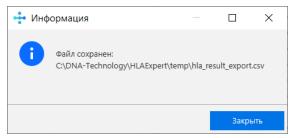


Рисунок 52 – Системный путь до созданного файла с результатом типирования

Примечание. По умолчанию все файлы сохраняются в подкаталог \reports\output каталога, в который была установлена программа HLA-Эксперт.

4. Нажмите кнопку [Закрыть].

Ознакомиться с содержимым созданного сsv-файла можно с помощью сторонней программы, например, Microsoft Excel.

4.5.2 Экспорт результатов типирования в файл формата *.xlsx

Для экспорта результатов типирования в файл формата *.xlsx нажмите кнопку над перечнем загруженных файлов образцов. На экране отобразится процесс формирования отчета. По завершении форматирования отчета на экране отобразится сообщение о сохраненном XLSX-файле отчета и вызове внешней программы для просмотра, если такая была настроена в Параметрах работы приложения (см. п. 3.4 данного руководства).

4.5.3 Параметры экспорта

Для экспорта результатов типирования обработанных файлов образцов, выделите нужные файлы (флаг в начале строки) и нажмите кнопку (расположенную над реестром файлов (рисунок 53).

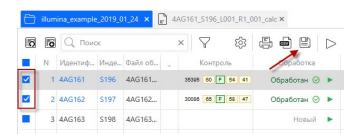


Рисунок 53 – Пример экспорта обработанных файлов образцов

На экране отобразится окно с параметрами экспорта (рисунок 54).

Укажите необходимые сведения и нажмите кнопку [Экспорт].

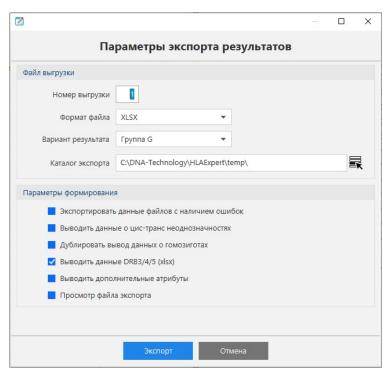


Рисунок 54 – Параметры экспорта результатов

Результаты будут сохранены в файл формата *.xlsx, а на экране отобразится окно с указанием системного пути до созданного файла (рисунок 55).

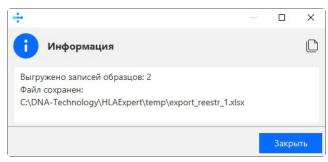


Рисунок 55 – Системный путь до созданного файла

Примечание. Выбор формата создаваемого файла (*.xlsx или *.csv), а также внешней программы просмотра, осуществляется в настройках программы (см. п. <u>3.4</u> данного руководства).

4.6 Завершение работы с HLA-Эксперт

Завершение работы с HLA-Эксперт осуществляется одним из следующих способов (рисунок 56):

- выберите пункт «Завершение работы» меню «Работа с образцами»;
- используйте стандартные средства ОС для закрытия программы;
- нажмите кнопку Панели инструментов.

Рисунок 56 – Завершение работы с программой

Далее подтвердите свой выбор, нажав кнопку [Да] в окне, отобразившемся на экране, после чего работа с программой будет завершена.

4.7 Удаление HLA-Эксперт

Удаление HLA-Эксперт с компьютера пользователя осуществляется стандартными средствами ОС. При этом каталог, в который была выполнена установка программы, удаляется со всем содержимым, в том числе подкаталог «data», содержащий базы данных IPD-IMGT/HLA.

4.8 Техническая поддержка

Если при работе с HLA-Эксперт возникли проблемы и вы не нашли их решения в данном руководстве, вам поможет Служба клиентской поддержки компании-производителя.

4.8.1 Отправка сообщения в Службу клиентской поддержки

Если возникшая проблема связана с обработкой конкретных файлов образцов, то воспользуйтесь функцией отправки сообщения в Службу клиентской поддержки, реализованной в HLA-Эксперт.

Для отправки сообщения об ошибке выполните следующие действия:

1. Нажмите кнопку над таблицей результатов обработки нужного файла образца (рисунок 57).

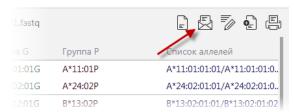


Рисунок 57 – Кнопка создания сообщения в службу поддержки

На экране отобразится форма создания сообщения (рисунок 58).

© 2023 ООО «ДНК-Технология ТС»

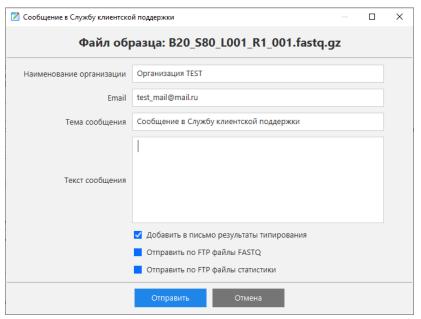


Рисунок 58 - Форма создания сообщения

- 2. Заполните поля формы:
 - Тема сообщения;
 - Текст сообщения.

Также установите соответствующие флаги выбора, если к сообщению необходимо прикрепить результаты типирования, файлы образцов и файлы статистики.

Примечание. Наименование организации и Email настраиваются пользователем программы в Параметрах приложения (см. п. <u>3.4</u>)

3. Нажмите кнопку [Отправить], после чего сообщение будет отправлено в Службу клиентской поддержки.

5 Адрес для обращений

Производство наборов реагентов имеет сертифицированную систему менеджмента качества и соответствует требованиям стандарта систем менеджмента качества ISO 9001 в области разработки, производства и продажи IVD реагентов и приборов для молекулярногенетической диагностики, и другого лабораторного применения, и EN ISO 13485 в области разработки, производства и продажи IVD реагентов и приборов для медицинской молекулярно-генетической диагностики.

Производитель: Общество с ограниченной ответственностью «ДНК-Технология ТС»; ООО «ДНК-Технология ТС», Россия.

Адрес производителя: ООО «ДНК-Технология ТС», Россия, 117246, г. Москва, проезд Научный, д.20, стр.4.

Место производства: ООО «ДНК-Технология ТС», Россия, 117246, г. Москва, проезд Научный, д.20, стр.4.

По вопросам, касающимся качества набора реагентов HLA-Эксперт и работы программного обеспечения HLA-Эксперт, следует обращаться в службу клиентской поддержки.

Служба клиентской поддержки:

8 (800) 200-75-15 (звонок по России бесплатный),

+7(495) 640-16-93 (для стран СНГ и зарубежья, звонок платный),

E-mail: hotline@dna-technology.ru

© 2023 ООО «ДНК-Технология TC» 50

Приложение А

ПЕРЕЧЕНЬ ПРИМЕНЯЕМЫХ НАЦИОНАЛЬНЫХ СТАНДАРТОВ

Перечень национальных стандартов, применяемых к HLA-Эксперт, включает:

- ГОСТ Р ИСО/МЭК 12119-2000 Информационная технология. Пакеты программ. Требования к качеству и тестирование;
- ГОСТ Р ИСО/МЭК 9126-93 Информационная технология. Оценка программной продукции. Характеристики качества и руководства по их применению;
- ГОСТ Р ИСО 9127-94 Системы обработки информации. Документация пользователя и информация на упаковке для потребительских программных пакетов;
- ГОСТ 28195-89 Оценка качества программных средств. Общие положения;
- ГОСТ Р ИСО/МЭК ТО 9294-93 Информационная технология. Руководство по управлению документированием программного обеспечения;
- ГОСТ Р 51188-98 Защита информации. Испытания программных средств на наличие компьютерных вирусов. Типовое руководство;
- ГОСТ Р МЭК 62304-2013 Изделия медицинские. Программное обеспечение. Процессы жизненного цикла.

Примечание. Указанные выше стандарты действительны на момент утверждения Руководства пользователя.

Перечень сокращений

БД - база данных

ГОСТ - межгосударственный стандарт

ГОСТ Р - государственный стандарт России

ИСО (ISO) - Международная организация по стандартизации

МЭК (IEC) - Международная электротехническая комиссия

НД - несанкционированный доступ

ООО - общество с ограниченной ответственностью

ОС - операционная система

ПК - персональный компьютер

ПС - программное средство

HLA - Human Leukocyte Antigens

IDE - Integrated Drive Electronics

IPD - Immuno Polymorphism Database

IMGT - International Immuno-Genetics Database

JRE - Java SE Runtime Environment

NGS - Next Generation Sequencing

SATA - Serial Advanced Technology Attachment

SMTP - Simple Mail Transfer Protocol

© 2023 ООО «ДНК-Технология ТС»