SEMEN MICROBIOTA OF PATIENTS WITH ASTENOZOOSPERMIA AND HEALTHY CONTROLS: CLUSTER ANALYSIS OF REAL-TIME PCR DATA

Voroshilina Ekaterina Panacheva Evgenia Pochernicov Denis

Ural State Medical University, Yekaterinburg, Russian Federation
Ivanovo State Medical Academy of the Ministry of Health of Russian Federation,
Ivanovo

Male Contribution to Infertility Worldwide

- 15% of married couples have infertility;
- Total about 50 mln couples;
- Male infertility 50% of all cases:
 - 20-30 % "pure" male infertility;
 - 20-30% mixed male and female infertility.

A. Agarwal, A. Mulgund, A. Hamada, M.R. Chyatte **A unique view on** male infertility around the globe Reprod Biol Endocrinol, 13 (2015), p. 37

Change in Sperm Count

- From 1973 to 2011 sperm count declined by 50–60% in the Western countries (North America, Europe, Australia, New Zealand);
- This trend was not characteristic of other countries.

H. Levine, N. Jørgensen, A. Martino-Andrade, et al. **Temporal trends in sperm count: a systematic review and meta-regression analysis** Hum Reprod Update, 23 (2017), pp. 646-659

Relevance of Studying Semen Microbiota

Male infertility remains unexplained in more than 50% of the cases

Up to 15% cases of infertility — genital tract infections

Less than 2% of the microorganisms can be cultured in a lab

Assessment of Semen Microbiota

- 16S rRNA gene specific Next generation sequencing
- Qualitative PCR
- Quantitative PCR (real-time PCR) –
 «ANDROFLOR®» Real-time PCR KIT (DNA-Technology, Russia)

«ANDROFLOR®» Real-time PCR KIT

Sexually transmitted pathogens (qualitative analysis)	C.trachomatis, N.gonorrhoeae, T.vaginalis, M.genitalium
Gram-positive facultative anaerobes (quantitative analysis)	Staphylococcus spp.Streptococcus spp.Corynebacterium spp.
Obligate anaerobes (quantitative analysis)	 Gardnerella vaginalis Atopobium cluster Megasphaera /Veilonella/Dialister Sneatia/Leptotrichia/Fusobacterium Bacteroides/Porphyromonas/Prevotella Anaerococcus Peptostreptococcus/Parvimonas Eubacterium

«ANDROFLOR®» Real-time PCR KIT

Genital mycoplasma (quantitative analysis)	Ureaplasma urealyticumUreaplasma parvumMycoplasma hominis
Gram-negative facultative anaerobes (quantitative analysis)	Haemophilus spp.Pseudomonas aeruginosa/Ralstonia/Burkholderia
Enterobacteriaceae / Enterococcus spp. group	•Enterobacteriaceae spp./Enterococcus spp.
Yeast-like fungi (quantitative analysis)	•Candida spp.
Transient microbiota (quantitative analysis)	Lactobacillus spp.

Study Design

- 301 patients, who came to the "Garmonia" Medical Center (Yekaterinburg, Russia) either seeking preconception care or for infertility treatment.
- Depending on the spermiogram results, they were divided into two groups.
 - Group 1 (n=171) asthenozoospermia,
 - Group 2 (n=130) normospermia

Methods: Semen Microbiota Evaluation

DNA extraction

- PREP-NA PLUS extraction kit (DNA-Technology, Russia)
- Real-time PCR
 - Androflor® REAL-TIME PCR Detection Kit (DNA-Technology, Russia)

Methods: Cluster Analysis

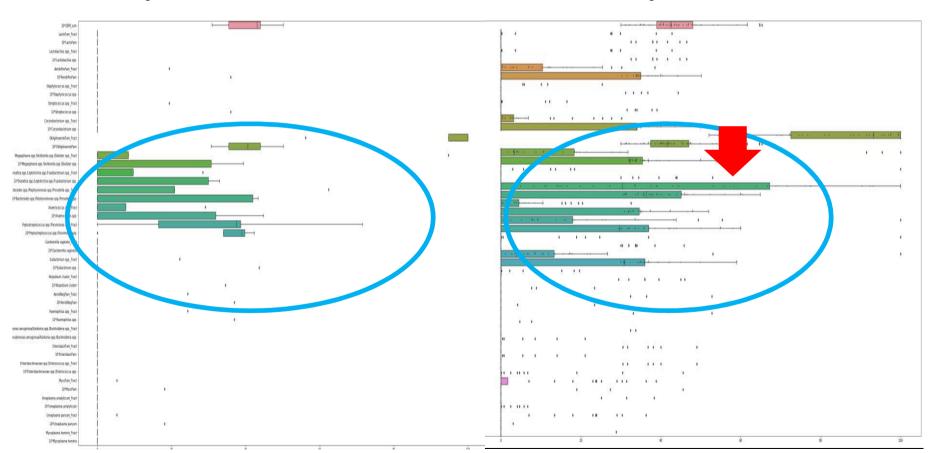
- Cluster analysis was performed for the samples with (total=301: asthenozoospermia=171, normospermia = 130) the total bacterial load (TBL) of at least 10³ GE/ml.
- Cluster analysis was conducted using the kmeans++ algorithm, scikit-learn.
- The Silhouette index and the Davies–Bouldin index (DBI) were used to confirm the stability of clusters.

Example of Lab Report after Testing the Semen Microbiota Using Real-time PCR Kit «ANDROFLOR®»

- Total bacterial load:4.2 log GE/ml
- 10 groups of microorganisms detected in quantity > 3.0 log GE/ml

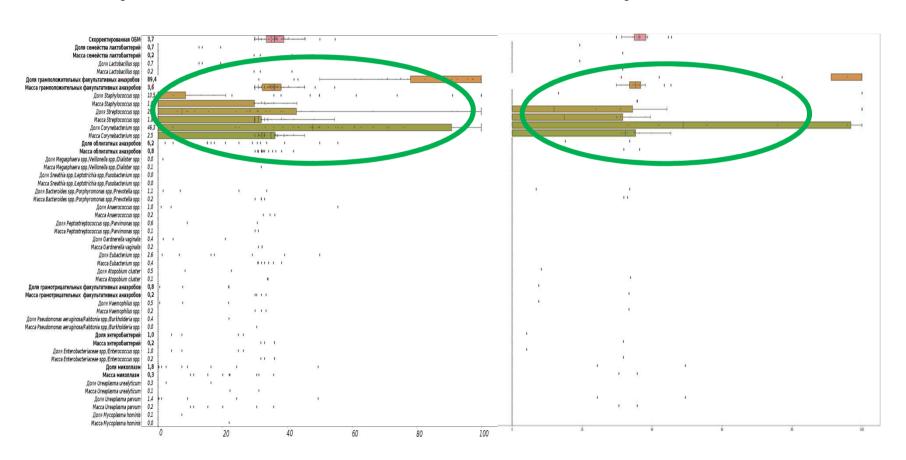
r practical medicine.
ne PCR (Androflor test) was introduced recently a icrobial communities, including non-culturable mic ralid comparative studies.

-based method and RT-PCR (Androflor test).


articular species and groups of bacteria in relation to The quantity of identified microorganisms was express

4 Stable Microbiota Clusters were Distinguished

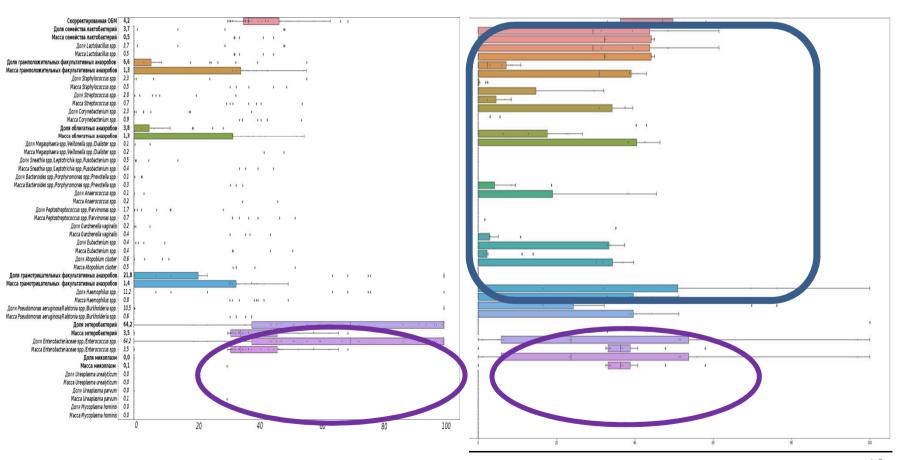
- Cluster 1 with predominance of obligate anaerobes (OA).
- Cluster 2 with predominance of gram-positive facultative anaerobes (GPFA)
- Cluster 3 with predominance of *Lactobacillus spp.* (LB)
- Cluster 4 with predominance of Enterobacteriaceae/Enterococcus (EE)


Cluster 1 – with Predominance of Obligate Anaerobes

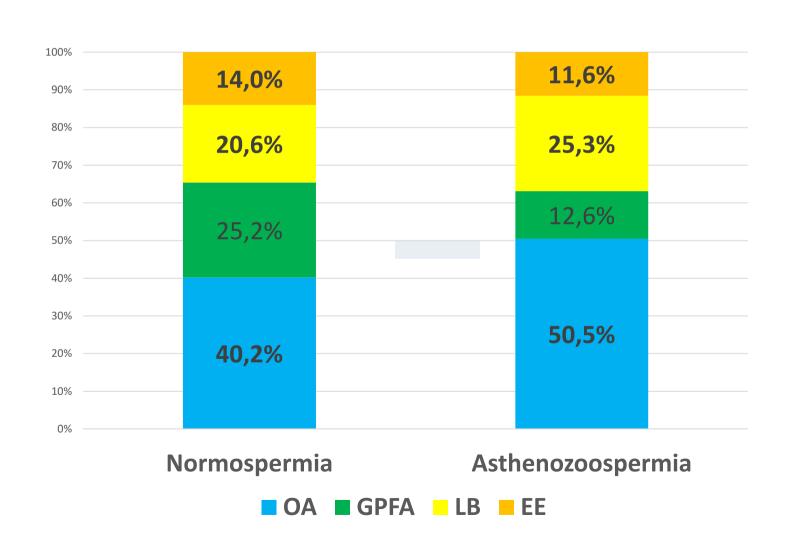
Normospermia

Cluster 2 - with Predominance of Gram-positive Facultative Anaerobes

Normospermia


Cluster with Predominance of Lactobacillus spp.

Normospermia



Cluster with Predominance of Enterobacteriaceae/Enterococcus (EE)

Normospermia

Cluster Detection Rate: Normospermia and Asthenozoospermia

Conclusion: Semen Microbiota in Patients with Normospermia

- Cluster formed by obligate anaerobes was not dominated by any bacteria group.
- Corynaebacterium spp., Streptococcus spp. are prevalent in the cluster formed by gram-positive facultative anaerobes.
- Lactobacilli prevalence is associated with the detection of obligate anaerobes and facultative anaerobes.
- Enterobacteriaceae spp./Enterococcus spp. group is associated with gram-positive anaerobes and obligate anaerobes, as well as low TBL.

Conclusion: Semen Microbiota in Patients with Asthenozoospermia

- One of the bacteria groups was prevalent in the obligate anaerobes cluster.
- Lactobacilli were present in the cluster where Enterobacteriaceae spp./Enterococcus spp. group was predominant.
- Corynaebacterium spp., Streptococcus spp. are prevalent in the cluster formed by grampositive facultative anaerobes.
- Lactobacilli cluster was formed without other bacteria groups.