







# инструкция по применению

Набор реагентов для выявления и типирования ДНК вирусов папилломы человека 16 и 18 типов методом ПЦР в режиме реального времени

HPV 16/18 Комплекс

Регистрационный номер Г004-00110-00/03380157 от 13.10.2025



# СОДЕРЖАНИЕ

| 1      | ПРЕДНАЗНАЧЕННОЕ ПРИМЕНЕНИЕ                                     | 4    |
|--------|----------------------------------------------------------------|------|
| 2      | ХАРАКТЕРИСТИКА НАБОРА РЕАГЕНТОВ                                | 5    |
| 2.1    | Состав набора реагентов                                        | 5    |
| 2.2    | Количество анализируемых образцов                              | 5    |
| 2.3    | Принцип метода                                                 | 5    |
| 3      | АНАЛИТИЧЕСКИЕ И ДИАГНОСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ                 | 7    |
| 3.1    | Аналитическая специфичность                                    | 7    |
| 3.2    | Интерферирующие вещества                                       | 7    |
| 3.3    | Предел обнаружения                                             | 8    |
| 3.4    | Диагностические характеристики                                 | 8    |
| 3.5    | Воспроизводимость и повторяемость                              | 8    |
| 4      | МЕРЫ ПРЕДОСТОРОЖНОСТИ                                          | 9    |
| 5      | ОБОРУДОВАНИЕ И МАТЕРИАЛЫ                                       | . 11 |
| 6      | АНАЛИЗИРУЕМЫЕ ОБРАЗЦЫ                                          | . 13 |
| 6.1    | Материал для исследования                                      | . 13 |
| 6.2    | Общие требования                                               | . 13 |
| 6.3    | Взятие материала на исследование                               | . 14 |
| 6.4    | Транспортирование и хранение образцов биологического материала | . 14 |
| 6.5    | Подготовка биологического материала человека для выделения ДНК | . 14 |
| 7      | ПРОВЕДЕНИЕ АНАЛИЗА                                             | . 15 |
| 7.1    | Выделение ДНК из биологического материала                      | . 15 |
| 7.2    | Подготовка и проведение ПЦР                                    | . 17 |
| 8      | РЕГИСТРАЦИЯ РЕЗУЛЬТАТОВ АМПЛИФИКАЦИИ                           | . 20 |
| 9      | УЧЁТ И ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ                               | . 20 |
| 10     | ТРАНСПОРТИРОВАНИЕ, ХРАНЕНИЕ И ЭКСПЛУАТАЦИЯ                     | . 22 |
| 11     | УКАЗАНИЯ ПО УТИЛИЗАЦИИ                                         | . 23 |
| 12     | ГАРАНТИИ ИЗГОТОВИТЕЛЯ                                          | . 23 |
| 13     | РЕМОНТ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ                              | . 23 |
| 14     | СИМВОЛЫ, ИСПОЛЬЗУЕМЫЕ ПРИ МАРКИРОВКЕ НАБОРА РЕАГЕНТОВ          | . 23 |
| 15     | ПЕРЕЧЕНЬ ПРИМЕНЯЕМЫХ НАЦИОНАЛЬНЫХ СТАНДАРТОВ                   | . 24 |
| 16     | АДРЕС ДЛЯ ОБРАЩЕНИЯ                                            | . 25 |
| Прилож | сение А                                                        | . 26 |
| Припоч | rougo E                                                        | 27   |



# СПИСОК СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ

В настоящей инструкции используются следующие сокращения и обозначения:

| RCF    | - от англ. relative centrifugal force, относительное ускорение центрифуги |
|--------|---------------------------------------------------------------------------|
| ВК     | - внутренний контроль                                                     |
| днк    | - дезоксирибонуклеиновая кислота                                          |
| ДНКазы | - дезоксирибонуклеазы                                                     |
| К-     | - отрицательный контрольный образец                                       |
| K+     | - положительный контрольный образец                                       |
| лко    | - лабораторный контрольный образец                                        |
| НК     | - нуклеиновые кислоты (РНК и ДНК)                                         |
| ПЦР    | - полимеразная цепная реакция                                             |
| РНК    | - рибонуклеиновая кислота                                                 |
| РНКазы | - рибонуклеазы                                                            |



#### 1 ПРЕДНАЗНАЧЕННОЕ ПРИМЕНЕНИЕ

- **1.1** Полное наименование набора реагентов: Набор реагентов для выявления и типирования ДНК вирусов папилломы человека 16 и 18 типов методом ПЦР в режиме реального времени (HPV 16/18 Комплекс), далее по тексту набор реагентов.
- **1.2** Назначение: набор реагентов предназначен для одновременного выявления и типирования ДНК вирусов папилломы человека высокого онкогенного риска 16-го и 18-го типов в биологическом материале человека (мазок/соскоб эпителия со слизистой оболочки урогенитального тракта) методом полимеразной цепной реакции в режиме реального времени.
- **1.3** Функциональное назначение: диагностика *in vitro*.
- **1.4** Показания к проведению исследования: симптомы инфекционного заболевания мочеполовой системы.

Противопоказаний к применению нет.

- **1.5** Популяционные и демографические аспекты: применение набора реагентов не зависит от популяционных и демографических аспектов.
- **1.6** Область применения: набор реагентов может быть использован в клиникодиагностических лабораториях медицинских учреждений.
- **1.7** Потенциальные пользователи: квалифицированный персонал, обученный методам молекулярной диагностики и правилам работы в клинико-диагностической лаборатории: врач клинико-диагностической лаборатории, фельдшер-лаборант (медицинский лабораторный техник).
- **1.8** Применять набор реагентов строго по назначению согласно данной инструкции по применению.



#### 2 ХАРАКТЕРИСТИКА НАБОРА РЕАГЕНТОВ

#### 2.1 Состав набора реагентов

| REF R1-P320-S3/9, фасовка S, стрипы                  |                                                                          |                             |                                 |  |  |
|------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------|---------------------------------|--|--|
| Наименование<br>компонента                           | Внешний вид                                                              | Количество<br>пробирок      | Номинальный<br>объём компонента |  |  |
| Смесь для<br>амплификации,<br>запечатанная парафином | Прозрачная бесцветная или розовая жидкость под воскообразным белым слоем | 12 стрипов<br>по 8 пробирок | по 20 мкл                       |  |  |
| Раствор Taq-полимеразы                               | Прозрачная бесцветная жидкость                                           | 2 пробирки                  | по 500 мкл                      |  |  |
| Минеральное масло                                    | Прозрачная бесцветная вязкая маслянистая жидкость                        | 2 пробирки                  | по 1,0 мл                       |  |  |
| Положительный контрольный образец $^1$               | Прозрачная бесцветная жидкость                                           | 1 пробирка                  | 130 мкл                         |  |  |
| Крышки для стрипов                                   | 12                                                                       | ШТ                          |                                 |  |  |

| R1-P320-23/9, фасовка S, пробирки                    |                                                                          |                        |                                 |  |  |
|------------------------------------------------------|--------------------------------------------------------------------------|------------------------|---------------------------------|--|--|
| Наименование<br>компонента                           | Внешний вид                                                              | Количество<br>пробирок | Номинальный<br>объём компонента |  |  |
| Смесь для<br>амплификации,<br>запечатанная парафином | Прозрачная бесцветная или розовая жидкость под воскообразным белым слоем | 96 пробирок            | по 20 мкл                       |  |  |
| Раствор Taq-полимеразы                               | Прозрачная бесцветная жидкость                                           | 2 пробирки             | по 500 мкл                      |  |  |
| Минеральное масло                                    | Прозрачная бесцветная вязкая маслянистая жидкость                        | 2 пробирки             | по 1,0 мл                       |  |  |
| Положительный контрольный образец $^1$               | Прозрачная бесцветная жидкость                                           | 1 пробирка             | 130 мкл                         |  |  |

Все компоненты набора реагентов готовы к применению и не требуют дополнительной подготовки к работе.

Комплектность:

- Набор реагентов в одном из вариантов исполнения 1 шт.
- Инструкция по применению 1 экз.
- Вкладыш 1 экз.
- Паспорт 1 экз.

#### 2.2 Количество анализируемых образцов

Набор реагентов рассчитан на 96 определений (не более 24 постановок), включая анализ неизвестных образцов, отрицательных контрольных образцов и положительных контрольных образцов.

# 2.3 Принцип метода

Метод: Полимеразная цепная реакция (ПЦР) с детекцией результатов: в режиме реального времени; мультиплексный качественный анализ.

 $<sup>^{1}</sup>$  – на этикетке компонента для всех фасовок «Положительный контрольный образец» указывается как «K+>»



Принцип метода основан на использовании процесса амплификации ДНК с помощью полимеразной цепной реакции (ПЦР). Процесс амплификации заключается в серии повторяющихся циклов температурной денатурации ДНК, отжига праймеров с комплементарными последовательностями и последующей достройки полинуклеотидных цепей Таq-полимеразой.

Для повышения чувствительности и специфичности реакции предусмотрено применение «горячего» старта. «Горячий» старт обеспечивается методикой приготовления реакционной смеси, состоящей из двух слоёв, разделённых прослойкой из парафина. Смешение слоёв и превращение их в амплификационную смесь происходит только после плавления парафина, что исключает неспецифическое связывание праймеров с ДНК-мишенью при более низких температурах. Помимо этого, парафин обеспечивает запечатывание реакционной смеси и дополнительную защиту от контаминации продуктами амплификации.

В реакционную смесь для амплификации введены ДНК-зонды, каждый из которых содержит флуоресцентную метку и гаситель флуоресценции. При образовании специфического продукта ДНК-зонд разрушается, действие гасителя на флуоресцентную метку прекращается, что ведёт к возрастанию уровня флуоресценции, который фиксируется детектирующим амплификатором. Количество разрушенных зондов (а, следовательно, и уровень флуоресценции) увеличивается пропорционально количеству образовавшихся специфических продуктов амплификации. Уровень флуоресценции измеряется на каждом цикле амплификации в режиме реального времени.

В состав смеси для амплификации включен внутренний контроль (ВК), который предназначен для оценки качества прохождения полимеразной цепной реакции.

В состав ДНК-зонда, использующегося для детекции продукта амплификации ДНК HPV18, включена флуоресцентная метка Fam. В состав ДНК-зонда, использующегося для детекции продукта амплификации ДНК HPV16, включена флуоресцентная метка Су5. В состав ДНК-зонда, использующегося для детекции продукта амплификации внутреннего контроля, входит флуоресцентный краситель Hex.

Использование нескольких флуоресцентных красителей позволяет сократить количество пробирок и биоматериала, необходимого для проведения исследования, поскольку появляется возможность одновременно регистрировать результаты разных реакций амплификации, проходящих в одной пробирке.

В таблице 1 приведены каналы детекции продуктов амплификации.

Таблица 1 - Каналы детекции продуктов амплификации

| Fam   | Hex/Vic | Rox | Cy5   | Cy5.5 |
|-------|---------|-----|-------|-------|
| HPV18 | ВК      | -   | HPV16 | -     |

Исследование состоит из следующих этапов: выделение ДНК (пробоподготовка) и ПЦР-амплификация ДНК с детекцией результатов в режиме реального времени с использованием набора реагентов HPV 16/18 Комплекс.



#### 3 АНАЛИТИЧЕСКИЕ И ДИАГНОСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ

#### **3.1** Аналитическая специфичность

В образцах биологического материала человека, содержащих ДНК HPV16 и/или HPV18, при проведении амплификации программное обеспечение детектирующего амплификатора должно регистрировать положительные результаты амплификации специфических продуктов (фрагменты геномов HPV16 и/или HPV18) по заявленным каналам детекции.

В образцах биологического материала, не содержащих ДНК HPV16 и/или HPV18, при проведении амплификации программное обеспечение детектирующего амплификатора должно регистрировать отрицательные результаты амплификации специфических продуктов (фрагменты геномов HPV16 и/или HPV18) по заявленным каналам детекции и положительный результат амплификации внутреннего контроля по каналу детекции Hex/Vic.

Наблюдалось отсутствие перекрестных неспецифических реакций каждого компонента, входящего в состав набора реагентов, по отношению к другой мишени системы.

Показано отсутствие неспецифических положительных результатов амплификации при наличии в образце ДНК Neisseria gonorrhoeae, Chlamydia trachomatis, Trihomonas vaginalis, Herpes symplex virus 1, Herpes symplex virus 2, Human herpesvirus 6, Human herpesvirus 8, Cytomegalovirus, Epstein-Barr virus, Human papillomavirus (HPV) генотипы 6, 11, 26, 31, 33, 35, 39, 44, 45, 51, 52, 53, 56, 58, 59, 66, 68, 73, 82, а также ДНК человека в концентрации до  $1,0 \times 10^8$  копий/мл образца.

#### 3.2 Интерферирующие вещества

Наличие ингибиторов ПЦР в образце биологического материала может быть причиной сомнительных (неопределённых/недостоверных) результатов. Признаком ингибирования ПЦР является одновременное отсутствие амплификации внутреннего контроля и специфического продукта.

К ингибиторам ПЦР отнесены следующие вещества: гемоглобин и лекарственные препараты, присутствующие в образце ДНК в результате неполного удаления в процессе выделения ДНК из образца биоматериала, а также изопропиловый спирт и метилацетат, присутствующие в образце ДНК в результате неполного удаления промывочных растворов в ходе пробоподготовки.

Максимальные концентрации интерферирующих веществ, при которых не наблюдалось влияние на амплификацию лабораторных контрольных образцов и внутреннего контрольного образца составляют: гемоглобин – 0,35 мг/мл образца ДНК, изопропиловый спирт – 100 мкл/мл образца ДНК.

Для оценки возможной интерференции лекарственных препаратов были выбраны те, которые потенциально могут присутствовать в остаточных количествах в биологических образцах человека, взятых из соответствующих исследуемых биотопов (Мирамистин $^{\otimes}$ , хлоргексидин биглюконат).



Для всех исследуемых лекарственных препаратов было показано отсутствие их влияния в концентрации до 10% в образце биоматериала.

#### 3.3 Предел обнаружения

Предел обнаружения составляет 5 копий ДНК каждого микроорганизма на амплификационную пробирку. Предел обнаружения установлен путём анализа серийных разведений лабораторного контрольного образца (ЛКО).

Предел обнаружения соответствует следующим значениям концентрации ДНК при использовании указанных наборов/комплектов реагентов для выделения НК и конечного объёма элюции (разведения) выделенной ДНК:

| Биоматериал                                     | Набор/комплект<br>реагентов для выделения | Объём<br>полученного<br>препарата,<br>мкл | Предел<br>обнаружения,<br>копий/мл<br>образца |
|-------------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------|
|                                                 | ПРОБА-НК                                  | 50                                        | 50                                            |
|                                                 | ПРОБА-НК-ПЛЮС                             | 300                                       | 300                                           |
|                                                 | ПРОБА-ГС                                  | 100                                       | 100                                           |
| Manage / socret a puta put                      | ПРОБА-ГС-ПЛЮС                             | 300                                       | 300                                           |
| Мазок/соскоб эпителия со<br>слизистой оболочки  | ПРОБА-МЧ-РАПИД                            | 100                                       | 100                                           |
| урогенитального тракта в<br>транспортной среде* | ПРОБА-МЧ МАКС                             | 100                                       | 100                                           |
|                                                 | ПРОБА-ОПТИМА                              | 400                                       | 400                                           |
|                                                 | ПРОБА-МЧ-РАПИД II                         | 100                                       | 100                                           |
|                                                 | ПРОБА-РАПИД                               | 500                                       | 500                                           |

<sup>\* –</sup> в качестве транспортной среды использовалась Транспортная среда для биопроб СТОР-Ф, ООО «ДНК-Технология ТС», Россия, РУ № РЗН 2020/9640

#### 3.4 Диагностические характеристики

| Вид<br>биоматериала                                                   | Диагностическая<br>чувствительность | Диагностическая<br>специфичность |  |
|-----------------------------------------------------------------------|-------------------------------------|----------------------------------|--|
| Мазок эпителия со слизистой оболочки урогенитального тракта (HPV 16)  | 100%<br>(95% ДИ: 86,28% - 100%)     | 100%<br>(95% ДИ: 86,28% - 100%)  |  |
| Мазок эпителия со слизистой оболочки урогенитального тракта (HPV 18)  | 100%<br>(95% ДИ: 86,28% - 100%)     | 100%<br>(95% ДИ: 86,28% - 100%)  |  |
| Соскоб эпителия со слизистой оболочки урогенитального тракта (HPV 16) | 100%<br>(95% ДИ: 86,28% - 100%)     | 100%<br>(95% ДИ: 86,28% - 100%)  |  |
| Соскоб эпителия со слизистой оболочки урогенитального тракта (HPV 18) | 100%<br>(95% ДИ: 86,28% - 100%)     | 100%<br>(95% ДИ: 86,28% - 100%)  |  |
| Итого                                                                 | 100%<br>(95% ДИ: 97,09% - 100%)     | 100%<br>(95% ДИ: 97,09% - 100%)  |  |

#### 3.5 Воспроизводимость и повторяемость

Воспроизводимость составляет 100%.

Повторяемость составляет 100%.



#### 4 МЕРЫ ПРЕДОСТОРОЖНОСТИ

Организация работы ПЦР-лаборатории, оборудование и материалы должны соответствовать требованиям ГОСТ Р ИСО 15190-2023, методических указаний МУ 1.3.2569-09 «Организация работы лабораторий, использующих методы амплификации нуклеиновых кислот, при работе с материалом, содержащим микроорганизмы I–IV групп патогенности», с соблюдением санитарных правил и норм СанПиН 3.3686-21 «Санитарно-эпидемиологические требования по профилактике инфекционных болезней».

Неизвестные образцы рассматриваются как потенциально-опасные. При работе с набором реагентов следует надевать одноразовые перчатки без талька.

При работе с микроорганизмами I–IV групп патогенности выбор типа защитного костюма (рабочей одежды и средств индивидуальной защиты) проводится в строгом соответствии с санитарными правилами и нормами СанПиН 3.3686-21 и определяется видом возбудителя, рабочей зоной, оснащением ее боксами биологической безопасности.

Следует использовать только одноразовые наконечники и пробирки.

Не допускается использование одних и тех же наконечников при обработке различных образцов биологического материала.

К работе с набором реагентов допускается персонал, обученный методам молекулярной диагностики и правилам работы в клинико-диагностической лаборатории.

Выделение ДНК следует проводить в боксах биологической безопасности II класса. Подготовку к ПЦР с использованием набора реагентов возможно проводить в ПЦР-боксах.

Запрещается перемещение лабораторного оборудования, в том числе дозаторов, штативов, лабораторной посуды, халатов, головных уборов и пр., а также растворов реагентов из одного помещения в другое.

Дозаторы должны быть соответствующим образом поверены (в аккредитованных лабораториях) и промаркированы.

Использованные одноразовые принадлежности (пробирки, наконечники и др.) должны сбрасываться в контейнер для медицинских отходов, содержащий дезинфицирующий раствор (при необходимости).

Поверхности рабочих столов, а также помещения, в которых проводится выделение НК и постановка ПЦР, следует обязательно, до и после проведения работ, облучать с помощью бактерицидных установок в течение 30 минут.

Все поверхности в лаборатории (рабочие столы, штативы, оборудование и др.) ежедневно подвергают влажной уборке с применением дезинфицирующих/моющих средств, регламентированных санитарными правилами и нормами СанПиН 3.3686-21.

**ВНИМАНИЕ!** Утилизировать отходы с продуктами ПЦР необходимо только в закрытом виде. Не допускается открывать пробирки после амплификации, так как это может привести к контаминации продуктами ПЦР (МУ 1.3.2569-09).



При использовании набора реагентов в клинико-диагностической лаборатории образуются отходы класса В, которые утилизируются в соответствии с требованиями санитарных правил и норм СанПиН 2.1.3684-21 «Санитарно-эпидемиологические требования к содержанию территорий городских и сельских поселений, к водным объектам, питьевой воде и питьевому водоснабжению, атмосферному воздуху, почвам, жилым помещениям, эксплуатации производственных, общественных помещений, организации и проведению санитарно-противоэпидемических (профилактических) мероприятий».

### Опасные компоненты в наборе реагентов

| Компонент<br>набора реагентов                  | Наличие/отсутствие<br>опасных компонентов | Указание на риски                                                        |
|------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|
| Смесь для амплификации, запечатанная парафином | Нет опасных веществ                       | -                                                                        |
| Раствор Taq-полимеразы                         | Нет опасных веществ                       | -                                                                        |
| Минеральное масло                              | Нет опасных веществ                       | -                                                                        |
| Положительный контрольный образец              | Азид натрия<br>менее 0,1%                 | Не классифицируется как опасный для здоровья человека и окружающей среды |

При работе с набором реагентов следует использовать средства индивидуальной защиты для предотвращения контакта с организмом человека. После окончания работы тщательно вымыть руки. Избегать контакта с кожей, глазами и слизистыми оболочками.

При использовании по назначению и соблюдении мер предосторожности, контакт с организмом человека исключён.

Не использовать набор реагентов:

- при нарушении условий транспортирования и хранения;
- при несоответствии внешнего вида реагентов, указанного в паспорте к набору реагентов;
- при нарушении внутренней упаковки компонентов набора реагентов;
- по истечению срока годности набора реагентов.

Примечание – Набор реагентов **не содержит** материалов биологического происхождения, веществ в концентрациях, обладающих канцерогенным, мутагенным действием, а также влияющих на репродуктивную функцию человека. При использовании по назначению и соблюдении мер предосторожности является безопасным.



#### **5** ОБОРУДОВАНИЕ И МАТЕРИАЛЫ

При работе с набором реагентов требуются следующие оборудование, реагенты и расходные материалы:

|                                                                                                                                                                                                                          | Фасовка S       |          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|--|
| Оборудование, реагенты и расходные материалы                                                                                                                                                                             | стрипы          | пробирки |  |
| ПЦР-бокс                                                                                                                                                                                                                 | да              | да       |  |
| амплификатор с детекцией в режиме реального времени <sup>1</sup>                                                                                                                                                         | да              | да       |  |
| микроцентрифуга-вортекс <sup>2</sup>                                                                                                                                                                                     | да              | да       |  |
| ротор для микроцентрифуги-вортекса для стрипованных пробирок<br>объёмом 0,2 мл                                                                                                                                           | да              | нет      |  |
| холодильник с морозильной камерой                                                                                                                                                                                        | да              | да       |  |
| штатив «рабочее место» для пробирок объёмом 1,5 мл                                                                                                                                                                       | да              | да       |  |
| штатив «рабочее место» для пробирок объёмом 0,2 мл                                                                                                                                                                       | нет             | да       |  |
| штатив «рабочее место» для стрипованных пробирок объёмом 0,2 мл                                                                                                                                                          | да              | нет      |  |
| дозаторы механические или электронные переменного объёма одноканальные, позволяющие отбирать объём жидкости от 2,0 до 20 мкл, от 200 до 1000 мкл                                                                         | да              | да       |  |
| наконечники одноразовые с фильтром для полуавтоматических<br>дозаторов, свободные от РНКаз и ДНКаз, объёмом 20 мкл, 200 мкл,<br>1000 мкл                                                                                 | да              | да       |  |
| штатив для дозаторов                                                                                                                                                                                                     | да              | да       |  |
| пробирки микроцентрифужные объёмом 1,5 мл с крышками,<br>свободные от РНКаз и ДНКаз                                                                                                                                      | да              | да       |  |
| одноразовые перчатки медицинские, без талька, текстурированные                                                                                                                                                           | да              | да       |  |
| ёмкость для сброса использованных наконечников, пробирок и других<br>расходных материалов                                                                                                                                | да              | да       |  |
| физиологический раствор (0,9% NaCl) стерильный (при<br>необходимости)                                                                                                                                                    | да              | да       |  |
| устройство дозирующее ДТстрим<br>по ТУ 9443-005-96301278-2012 в варианте исполнения 12М1 или 15М1,<br>ООО «НПО ДНК-Технология», Россия, РУ № РЗН 2015/2982,<br>далее по тексту – ДТстрим                                 | да <sup>3</sup> | нет      |  |
| одноразовые наконечники с фильтром для дозирующего устройства<br>ДТстрим в комплектации *M1, свободные<br>от РНКаз и ДНКаз, объёмом 200 мкл или рекомендованные<br>для аналогичного используемого дозирующего устройства | да <sup>3</sup> | нет      |  |

транспортная среда, рекомендуются:

<sup>–</sup> Транспортная среда для биопроб СТОР-Ф по ТУ 21.20.23-101-46482062-2019, ООО «ДНК Технология ТС», Россия, РУ № РЗН 2020/9640;

<sup>–</sup> Транспортная среда для биопроб с муколитиком СТОР-М<sup>4</sup> по ТУ 21.20.23-102-46482062-2019, ООО «ДНК-Технология ТС», Россия, РУ № РЗН 2019/9453, допускается использовать транспортные среды, зарегистрированные на территории РФ в установленном порядке



| Оборудование, реагенты и расходные материалы | Фасовка S |          |
|----------------------------------------------|-----------|----------|
|                                              | стрипы    | пробирки |

набор/комплект реагентов для выделения НК из биологического материала, рекомендуются:

- Комплект реагентов для выделения ДНК ПРОБА-РАПИД
- по ТУ 9398-015-46482062-2008, ООО «ДНК-Технология ТС», Россия, РУ № ФСР 2008/02939;
- Комплект реагентов для выделения нуклеиновых кислот ПРОБА-НК/ПРОБА-НК-ПЛЮС по ТУ 9398-035-46482062-2009 в формах комплектации: комплект ПРОБА-НК, комплект ПРОБА-НК ПЛЮС, ООО «ДНК-Технология ТС», Россия, РУ № ФСР 2010/08867;
- Комплект реагентов для выделения ДНК по ТУ 9398-037-46482062-2009 в формах комплектации: ПРОБА-ГС, ПРОБА-ГС-ПЛЮС, ООО «ДНК-Технология ТС», Россия, РУ № ФСР 2010/08696;
- Набор реагентов для выделения нуклеиновых кислот ПРОБА-МЧ по ТУ 9398-088-46482062-2016 в форме комплектации ПРОБА-МЧ-РАПИД, ООО «ДНК-Технология ТС», Россия, РУ № РЗН 2017/5753;
- OOO «ДНК-Технология ТС», Россия, РУ № РЗН 2017/5753; – Набор реагентов для выделения ДНК ПРОБА-МЧ МАКС по ТУ 21.20.23-106-46482062-2019, OOO «ДНК-Технология ТС», Россия, РУ № РЗН 2021/14391;
- Набор реагентов для выделения ДНК человека, бактерий, вирусов и грибов из биологического материала человека и культур микроорганизмов (ПРОБА-ОПТИМА)
  по ТУ 21.20.23-124-46482062-2021, ООО «ДНК-Технология ТС», Россия, РУ № РЗН 2022/17496;
- Набор реагентов для выделения ДНК/РНК человека, бактерий, вирусов и грибов из биологического материала человека (ПРОБА-МЧ-РАПИД II)
   по ТУ 21.20.23-136-46482062-2023, ООО «ДНК-Технология ТС», Россия, РУ № РЗН 2024/23205.

#### Примечания к таблице:

- <sup>1</sup> далее по тексту детектирующий амплификатор; требуемые параметры детектирующих амплификаторов указаны ниже
- <sup>2</sup> рекомендуется Встряхиватель лабораторный медицинский «ДТспин» по ТУ 32.50.50-003- 96301278-2024, ООО «НПО ДНК-Технология», Россия, РУ № РЗН 2024/24070; ротор для стрипованных пробирок объёмом 0,2 мл входит в комплектацию
- <sup>3</sup> в случае использования автоматизированного дозирования
- <sup>4</sup> не рекомендуется для совместного применения с набором реагентов ПРОБА-МЧ-РАПИД II

Набор реагентов применяется с детектирующими амплификаторами планшетного типа с системой детекции флуоресцентного сигнала в режиме реального времени, зарегистрированными в установленном порядке в РФ и соответствующими следующим требованиям:

- обеспечивается работа с объёмом реакционной смеси 35 мкл;
- обеспечивается работа с флуорофорами: Fam, Hex, Cy5;
- подогреваемая крышка с температурой более 100 °C;
- скорость нагрева не менее 2 °C/с;
- скорость охлаждения не менее 1 °C/c;
- точность поддержания и однородность температуры не более  $\pm$  0,4 °C.



Для работы с набором реагентов валидированы следующие детектирующие амплификаторы:

- Амплификатор детектирующий «ДТпрайм» по ТУ 9443-004-96301278-2010 (модификация «ДТпрайм \*М\*»), ООО «НПО ДНК-Технология», Россия, РУ № ФСР 2011/10229, далее по тексту «ДТпрайм»;
- Амплификатор детектирующий «ДТпрайм II» по ТУ 26.51.53-001-96301278-2022 (модификация «ДТпрайм II \*M\*»), ООО «НПО ДНК-Технология», Россия, РУ № РЗН 2024/24179, далее по тексту «ДТпрайм II»;
- Амплификатор детектирующий «ДТлайт» по ТУ 9443-003-96301278-2010 (модификация «ДТлайт \*S\*»), ООО «НПО ДНК-Технология», Россия, РУ № ФСР 2011/10228, далее по тексту «ДТлайт»;
- Термоциклер для амплификации нуклеиновых кислот 1000 с модулем реакционным оптическим CFX96 (Optical Reaction Module CFX96), Био-Рад Лабораториез, Инк; США, РУ № ФСЗ 2008/03399, далее по тексту CFX96;
- Амплификатор нуклеиновых кислот Applied Biosystems QuantStudio 5 с гибридизационнофлуоресцентной детекцией продуктов ПЦР в режиме реального времени, «Лайф Текнолоджис Холдингс Пте. Лтд.», Сингапур, РУ № РЗН 2019/8446, далее по тексту – Applied Biosystems QuantStudio 5.

По вопросам применения детектирующих амплификаторов, не указанных выше, требуется согласование с производителем набора реагентов.

#### 6 АНАЛИЗИРУЕМЫЕ ОБРАЗЦЫ

#### 6.1 Материал для исследования

Для исследования используют мазок/соскоб эпителия со слизистой оболочки урогенитального тракта.

#### 6.2 Общие требования

- 6.2.1 Исследование методом ПЦР относится к прямым методам лабораторного исследования, поэтому взятие биологического материала человека необходимо проводить из места локализации инфекционного процесса. Решение о необходимости исследовать ту или иную локализацию принимает лечащий врач на основании собранного анамнеза и клинической картины заболевания.
- 6.2.2 Для получения корректных результатов большое значение имеет качество взятия образца биоматериала для исследования, его хранение, транспортирование и предварительная обработка. Неправильное взятие биоматериала может привести к получению недостоверных результатов и, вследствие этого, необходимости его повторного взятия.
- 6.2.3 При необходимости взятия мазков/соскобов из нескольких биотопов повторите процедуру, каждый раз забирая материал новым зондом в новую пробирку.



- 6.2.4 На этапах подготовки биоматериала используйте одноразовые наконечники с фильтром, свободные от РНКаз и ДНКаз.
- 6.2.5 Для предотвращения контаминации открывайте крышку только той пробирки, с которой идёт работа (внесение образца/реактива, удаление надосадочной жидкости), и закрывайте её после этого. Не допускается работать одновременно с несколькими пробирками с открытыми крышками.

Примечание – Взятие, предварительную обработку, хранение и перевозку, передачу исследуемого материала в другие организации осуществляют согласно инструктивно-методическим документам, регламентирующим выполнение исследований в соответствии с требованиями МУ 1.3.2569-09 и СанПиН 3.3686-21.

#### 6.3 Взятие материала на исследование

**ВНИМАНИЕ!** Перед выделением ДНК может потребоваться подготовка образцов биологического материала (6.5).

Взятие материала осуществляют с помощью специальных медицинских изделий, имеющих регистрационные удостоверения, согласно установленной в зависимости от источника биологического материала процедуре (например, Зонды медицинские по ТУ 9436-002-98349125-2016 в вариантах исполнения: 1. Зонд тип А универсальный: − тип А1, ООО «Медицинские изделия», Россия, РУ № РЗН 2018/7058).

Взятие материала проводится в соответствии с инструкциями по применению используемых наборов/комплектов реагентов для выделения НК (7.1).

**Ограничение метода**<sup>1</sup>: местное применение лекарственных препаратов, использование лубрикантов, УЗИ вагинальным датчиком, кольпоскопия – менее чем за 24 часа до исследования.

**ВНИМАНИЕ!** Взятие материала в пробирки с реактивом «ПРОБА-РАПИД» осуществляется сухим зондом! Необходимо исключить контакт раствора с кожей, глазами и слизистыми оболочками.

**6.4** Транспортирование и хранение образцов биологического материала

Условия транспортирования и хранения образцов биологического материала определяются инструкциями по применению рекомендуемых наборов/комплектов реагентов для выделения ДНК (7.1) или используемых для транспортирования и хранения образцов транспортных сред.

6.5 Подготовка биологического материала человека для исследования

Подготовка мазков/соскобов эпителия со слизистой оболочки урогенитального тракта (при необходимости) проводится в соответствии с инструкциями по применению используемых наборов/комплектов реагентов для выделения НК (7.1) или используемых для транспортирования и хранения образцов транспортных сред.

 $<sup>^{1}</sup>$  – если это не противоречит требованиям к используемым наборам/комплектам реагентов для выделения HK



# Соскобы, взятые в транспортно-фиксирующую среду для жидкостной цитологии

При фиксации в некоторых спиртовых транспортных средах для жидкостной цитологии, например, в консервирующей жидкости BD SurePath (Becton Dickinson, США,  $PY N^Q \Phi C3 \ 2010/06235$ ) происходит сшивание нуклеиновых кислот с белками, поэтому необходима предварительная обработка образцов с целью освобождения ДНК из белокассоциированных комплексов и лизиса клеток.

Соскобы, взятые в транспортно-фиксирующую среду для жидкостной цитологии BD SurePath (Becton Dickinson, США, РУ № ФСЗ 2010/06235), необходимо предобработать с использованием Набора реагентов для предобработки биоматериала при выделении нуклеиновых кислот (ПРОБА-ПК), ООО «ДНК-Технология TC», Россия, РУ № РЗН 2021/14384 в соответствии с инструкцией по применению.

Транспортно-фиксирующие среды PreservCyt ThinPrep (Hologic Inc, США, РУ № ФСЗ 2012/11750) или Cellprep AUTO (Biodyne Co. Ltd., Корея, РУ № РЗН 2020/11462) не требуют предварительной обработки образцов с использованием набора реагентов ПРОБА-ПК.

#### 7 ПРОВЕДЕНИЕ АНАЛИЗА

#### 7.1 Выделение ДНК из биологического материала

Для выделения ДНК из мазков/соскобов эпителия со слизистой оболочки урогенитального тракта рекомендуется использовать наборы/комплекты реагентов, имеющие регистрационные удостоверения на медицинское изделие и предназначенные для соответствующих видов биоматериала с целью последующего исследования ДНК методом ПЦР, например, ПРОБА-РАПИД, ПРОБА-НК, ПРОБА-НК-ПЛЮС, ПРОБА-ГС, ПРОБА-ГС-ПЛЮС, ПРОБА-МЧ-РАПИД, ПРОБА-ОПТИМА, ПРОБА-МЧ МАКС, ПРОБА-МЧ-РАПИД II.

Примечание – Не рекомендуется использовать комплект реагентов ПРОБА-РАПИД при выделении ДНК из соскобов из урогенитального тракта мужчин.



Таблица 2 – Наборы/комплекты реагентов, рекомендованные для выделения ДНК для дальнейшего исследования с использованием набора реагентов HPV 16/18 Комплекс

| Набор/комплект реагентов, РУ                                 | Биоматериал                                                                                                              | Минимальное<br>количество<br>элюата, мкл |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Комплект реагентов                                           | Мазок/соскоб эпителия со слизистой<br>оболочки урогенитального тракта                                                    |                                          |
| ПРОБА-НК,<br>РУ № ФСР 2010/08867                             | Мазок/соскоб эпителия со слизистой оболочки урогенитального тракта (сокращённая методика в соответствии с Приложением Б) | 50                                       |
| Комплект реагентов                                           | Мазок/соскоб эпителия со слизистой оболочки урогенитального тракта                                                       |                                          |
| ПРОБА-НК-ПЛЮС,<br>РУ № ФСР 2010/08867                        | Мазок/соскоб эпителия со слизистой оболочки урогенитального тракта (сокращённая методика в соответствии с Приложением Б) | 300                                      |
| Комплект реагентов<br>ПРОБА-ГС,<br>РУ № ФСР 2010/08696       | Мазок/соскоб эпителия со слизистой оболочки урогенитального тракта                                                       | 100                                      |
| Комплект реагентов<br>ПРОБА-ГС-ПЛЮС,<br>РУ № ФСР 2010/08696  | Мазок/соскоб эпителия со слизистой<br>оболочки урогенитального тракта                                                    | 300                                      |
| Комплект реагентов<br>ПРОБА-РАПИД,<br>РУ № ФСР 2008/02939    | Мазок/соскоб эпителия со слизистой оболочки урогенитального тракта                                                       | 500                                      |
| Набор реагентов<br>ПРОБА-МЧ-РАПИД,<br>РУ № РЗН 2017/5753     | Мазок/соскоб эпителия со слизистой оболочки урогенитального тракта                                                       | 100                                      |
| Набор реагентов<br>ПРОБА-ОПТИМА,<br>РУ № РЗН 2022/17496      | Мазок/соскоб эпителия со слизистой оболочки урогенитального тракта                                                       | 400                                      |
| Набор реагентов<br>ПРОБА-МЧ МАКС<br>РУ № РЗН 2021/14391      | Мазок/соскоб эпителия со слизистой оболочки урогенитального тракта                                                       | 100                                      |
| Набор реагентов<br>ПРОБА-МЧ-РАПИД II,<br>РУ № РЗН 2024/23205 | Мазок/соскоб эпителия со слизистой оболочки урогенитального тракта                                                       | 100                                      |

Выделение ДНК проводят в соответствии с инструкцией по применению используемого набора/комплекта реагентов.

**ВНИМАНИЕ!** Одновременно с выделением ДНК из биологического материала необходимо подготовить отрицательный контрольный образец и провести его через все этапы пробоподготовки. Для этого рекомендуется использовать физиологический раствор или отрицательный контрольный образец, входящий в состав набора/комплекта реагентов для выделения нуклеиновых кислот в объёме, указанном в инструкции по применению соответствующего набора/комплекта реагентов.



#### 7.2 Подготовка и проведение ПЦР

#### ВНИМАНИЕ!

- 1. При проведении всех последующих действий следует избегать воздействия прямых солнечных лучей на пробирки со смесью для амплификации!
- 2. При использовании набора реагентов в варианте исполнения «Фасовка S, стрипы» следует строго соблюдать комплектность стрипов и крышек к ним. Не использовать крышки к стрипам из других наборов реагентов!
- 3. Для набора реагентов в варианте исполнения «Фасовка S, стрипы» предусмотрена возможность автоматизированного дозирования с использованием дозирующего устройства ДТстрим согласно руководству по эксплуатации.
- 7.2.1 Промаркируйте по одной пробирке/стрипованной пробирке со смесью для амплификации, запечатанной парафином, для каждого неизвестного образца, для отрицательного контрольного образца (K-) и для положительного контрольного образца (K+).

**ВНИМАНИЕ!** Количество реагентов рассчитано не более чем на 24 постановки при условии вариабельного количества неизвестных образцов, 1 отрицательного контрольного образца и 1 положительного контрольного образца в одной постановке.

#### Пример:

Необходимо проанализировать 4 неизвестных образца. Для этого необходимо промаркировать 4 пробирки для неизвестных образцов, одну пробирку для «K-» и одну для «K+». Общее количество пробирок – 6.

- 7.2.2 Встряхните пробирку с раствором Таq-полимеразы на микроцентрифуге-вортексе в течение 3–5 с и центрифугируйте на микроцентрифуге-вортексе в течение 1–3 с.
- 7.2.3 Добавьте во все промаркированные пробирки, не повреждая слой парафина, по 10 мкл раствора Таq-полимеразы.
- 7.2.4 Добавьте в каждую пробирку по одной капле (около 20 мкл) минерального масла. Неплотно прикройте пробирки/стрипы крышками.
- 7.2.5 Встряхните пробирку с положительным контрольным образцом на микроцентрифугевортексе в течение 3-5 с и центрифугируйте на микроцентрифуге-вортексе в течение 1-3 с.

#### ВНИМАНИЕ!

- 1. Для препарата ДНК и отрицательного контрольного образца перед внесением в пробирки с реакционной смесью необходимо выполнить рекомендации по использованию препарата ДНК, приведённые в инструкции по применению набора/комплекта реагентов для выделения НК.
- 2. При использовании для выделения ДНК комплектов реагентов ПРОБА-НК, ПРОБА-НК-ПЛЮС и ПРОБА-ГС, ПРОБА-ГС-ПЛЮС (только в случае, если после выделения надосадочная жидкость, содержащая выделенную ДНК, была перенесена в новые пробирки) необходимо встряхнуть пробирки с препаратом ДНК и отрицательным контрольным образцом на микроцентрифуге-вортексе в течение 3–5 с и центрифугировать на микроцентрифуге-вортексе в течение 1–3 с.



- 3. При использовании для выделения ДНК наборов реагентов ПРОБА-МЧ-РАПИД и ПРОБА-МЧ МАКС необходимо, не встряхивая, центрифугировать пробирки с препаратом ДНК и отрицательным контрольным образцом на микроцентрифуге-вортексе в течение 1–3 с, затем поместить пробирки в магнитный штатив. В случае если после выделения надосадочная жидкость, содержащая выделенную ДНК, была перенесена в новые пробирки, следует встряхнуть пробирки с препаратом ДНК и отрицательным контрольным образцом на микроцентрифуге-вортексе в течение 3–5 с и центрифугировать на микроцентрифуге-вортексе в течение 1–3 с.
- 4. Для предотвращения контаминации следует перед внесением ДНК открывать крышки только тех пробирок, в которые будет вноситься данный образец, и закрывать их, перед внесением следующего. В случае использования стрипов следует закрывать крышку стрипа после внесения в него образцов перед началом работы со следующим. Необходимо закрывать пробирки/стрипы плотно. Препараты ДНК и контрольные образцы следует вносить наконечниками с фильтром.
- 7.2.6 Внесите в соответствующие промаркированные пробирки, не повреждая слой парафина, по 5,0 мкл выделенного из образцов препарата ДНК. В пробирки, промаркированные «К-» и «К+», ДНК не вносится.
- 7.2.7 Внесите в пробирку, промаркированную «К-», не повреждая слой парафина, 5,0 мкл отрицательного контрольного образца, прошедшего этап выделения ДНК (см. 7.1).
- 7.2.8 Внесите в пробирку, промаркированную «К+», не повреждая слой парафина, 5,0 мкл положительного контрольного образца.
- 7.2.9 Центрифугируйте все пробирки/стрипы на микроцентрифуге-вортексе в течение 3–5 с.
- 7.2.10 Установите все пробирки/стрипы в детектирующий амплификатор.
- 7.2.11 Для детектирующих амплификаторов серии ДТ: Запустите программное обеспечение детектирующего амплификатора. При первом проведении ПЦР загрузите соответствующий тест<sup>1</sup>. Далее и при последующих постановках создайте соответствующий протокол исследования: укажите количество и идентификаторы образцов, в том числе отрицательного и положительного контрольных образцов, отметьте расположение пробирок/стрипов на матрице термоблока в соответствии с их установкой (см. 7.2.10) и проведите ПЦР. При выборе теста должна отображаться программа, приведённая в таблице 3.
- 7.2.12 Для детектирующих амплификаторов CFX96 и Applied Biosystems QuantStudio 5: Проведите ПЦР с учетом объёма реакционной смеси, равного 35 мкл, по программам амплификации, приведённым в таблицах 4, 5 соответственно.

<sup>&</sup>lt;sup>1</sup> – тест для детектирующих амплификаторов серии ДТ создаётся путём ввода параметров (параметры теста указаны в Приложении А) или предоставляется производителем набора реагентов



Таблица 3 – Программа амплификации для детектирующих амплификаторов «ДТпрайм», «ДТпрайм II», «ДТлайт»

| №<br>блока                     | Температура, °С | мин | С  | Число<br>циклов | Режим оптических измерений | Тип блока |
|--------------------------------|-----------------|-----|----|-----------------|----------------------------|-----------|
| 1                              | 80              | 0   | 30 | 1               |                            | Huen      |
| 1                              | 94              | 1   | 30 | 1               |                            | Цикл      |
|                                |                 |     |    |                 |                            |           |
| 2                              | 94              | 0   | 30 | 5               |                            | Huen      |
| 2                              | 64              | 0   | 15 | 5               | √                          | Цикл      |
|                                |                 |     |    |                 |                            |           |
| 3                              | 94              | 0   | 10 | 45              |                            | Huica     |
| 3                              | 64              | 0   | 15 | 43              | √                          | Цикл      |
|                                |                 |     |    |                 |                            |           |
| 4                              | 94              | 0   | 5  | 1               |                            | Цикл      |
|                                |                 |     |    |                 |                            |           |
| 5                              | 25 <sup>1</sup> |     |    | Хранение        |                            | Хранение  |
| √ – режим оптических измерений |                 |     |    |                 |                            |           |

Таблица 4 - Программа амплификации для детектирующих амплификаторов СFX96

| Температура, °С | Время,<br>мин: сек     | Количество циклов<br>(повторов)  |
|-----------------|------------------------|----------------------------------|
| 80              | 01:00                  | 1                                |
| 94              | 01:30                  | 1                                |
| 94              | 00:15                  | 50                               |
| 64 √            | 00:20                  | 50                               |
|                 | 80<br>94<br>94<br>64 √ | 80 01:00<br>94 01:30<br>94 00:15 |

<sup>√</sup> – режим оптических измерений (Plate Read), установить измерение флуоресценции по необходимым каналам детекции (Fam, Hex, Cy5) при 64 °C

Таблица 5 – Программа амплификации для детектирующих амплификаторов Applied Biosystems QuantStudio 5

| Стадия                                                        | №<br>шага | Температура, °С | Время<br>мин: сек | Количество циклов<br>(повторов) |  |  |
|---------------------------------------------------------------|-----------|-----------------|-------------------|---------------------------------|--|--|
| Стадия<br>удержания                                           | 1         | 80              | 01:00             | 1                               |  |  |
|                                                               | 2         | 94              | 01:30             | 1                               |  |  |
| Стадия<br>ПЦР                                                 | 1         | 94              | 00:20             | - 50                            |  |  |
|                                                               | 2         | 64 √            | 00:20             |                                 |  |  |
| √ – сбор данных для флуорофоров (Fam, Vic (Hex), Су5) включен |           |                 |                   |                                 |  |  |

<sup>&</sup>lt;sup>1</sup> – допускается хранение при температуре 10 °C



#### 8 РЕГИСТРАЦИЯ РЕЗУЛЬТАТОВ АМПЛИФИКАЦИИ

Регистрация сигнала флуоресценции проводится детектирующим амплификатором автоматически во время амплификации.

#### 9 УЧЁТ И ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ

- **9.1** Учёт результатов амплификации осуществляется автоматически с помощью программного обеспечения, поставляемого с детектирующим амплификатором.
- **9.2** При использовании детектирующих амплификаторов CFX96 следует использовать регрессионный тип анализа (Cq Determination Mode: Regression), во вкладке «Baseline Setting» необходимо выбрать «Baseline Subtracted Curve Fit».
- **9.3** Интерпретация результатов проводится в соответствии с таблицей 6. Результаты постановки валидны, если выполняются условия интерпретации результатов, полученных для контрольных образцов.

Таблица 6 - Интерпретация результатов ПЦР

| Канал детекции                    |                     |                | 14                                            |  |  |  |  |
|-----------------------------------|---------------------|----------------|-----------------------------------------------|--|--|--|--|
| Fam,                              | Hex/Vic,            | Cy5,           | Интерпретация результата                      |  |  |  |  |
| Cp/Cq/Ct                          | Cp/Cq/Ct            | Cp/Cq/Ct       |                                               |  |  |  |  |
|                                   | Неизвестные образцы |                |                                               |  |  |  |  |
| Указан                            | Не учитывается      | Не указан      | Обнаружена ДНК<br>HPV18                       |  |  |  |  |
| Не указан                         | Не учитывается      | Указан         | Обнаружена ДНК<br>HPV16                       |  |  |  |  |
| Указан                            | Не учитывается      | Указан         | Обнаружена ДНК HPV18,<br>обнаружена ДНК HPV16 |  |  |  |  |
| Не указан                         | Указан              | Не указан      | Не обнаружена ДНК выявляемых микроорганизмов  |  |  |  |  |
| Не указан                         | Не указан           | Не указан      | Недостоверный результат                       |  |  |  |  |
| Отрицательный контрольный образец |                     |                |                                               |  |  |  |  |
| Но мерери                         | Указан              | Не указан      | Отрицательный результат                       |  |  |  |  |
| Не указан                         |                     |                | Результаты постановки валидны                 |  |  |  |  |
| Положительный контрольный образец |                     |                |                                               |  |  |  |  |
| Указан                            | Указан              | Указан         | Положительный результат                       |  |  |  |  |
| J Ka3dH                           | J Ka3dH             | <i>3</i> казан | Результаты постановки валидны                 |  |  |  |  |

**9.4** Недостоверный результат может быть связан с присутствием ингибиторов в препарате ДНК, полученном из биологического материала; неверным выполнением протокола анализа; несоблюдением температурного режима амплификации и др. В этом случае требуется повторное проведение ПЦР с имеющимся препаратом ДНК, либо повторное выделение ДНК и постановка ПЦР для этого образца, либо повторное взятие биологического материала у пациента (выполняется последовательно).



- 9.5 Если для биологического образца получены значения Cp/Cq/Ct <24 по каналам детекции Fam или Cy5, то это свидетельствует о высокой первоначальной концентрации ДНК соответствующего микроорганизма. В данном случае при микст-инфицировании возможно получение ложноотрицательного результата для микроорганизма, ДНК которого присутствует в низкой концентрации. Для исключения ложноотрицательных результатов рекомендуется повторно провести ПЦР выделенного препарата ДНК с использованием Набора реагентов для выявления ДНК вирусов папилломы человека высокого онкогенного риска методом полимеразной цепной реакции (ВПЧ-ГЕН-16/18), ООО «ДНК-Технология ТС», Россия, РУ № ФСР 2008/03845 в одном из вариантов исполнения: Вирус папилломы человека 16 типа (НРV 16) или Вирус папилломы человека 18 типа (НРV 18).
- **9.6** При получении положительного результата для отрицательного контрольного образца результаты всей постановочной серии считают недостоверными. В этом случае необходимо проведение специальных мероприятий для выявления и устранения возможной контаминации.
- **9.7** При получении отрицательного результата для положительного контрольного образца результаты всей постановочной серии считают недостоверными. В этом случае требуется повторная постановка амплификации всей партии образцов.



#### 10 ТРАНСПОРТИРОВАНИЕ, ХРАНЕНИЕ И ЭКСПЛУАТАЦИЯ

#### **10.1** Транспортирование

- 10.1.1 Транспортирование набора реагентов осуществляют в термоконтейнерах с хладоэлементами всеми видами крытого транспорта при температуре внутри термоконтейнера, соответствующей условиям хранения компонентов, входящих в состав набора реагентов.
- 10.1.2 Допускается транспортирование набора реагентов в термоконтейнерах с хладоэлементами всеми видами крытого транспорта при температуре внутри термоконтейнера от 2 °C до 25 °C не более 5 суток.
- 10.1.3 Наборы реагентов, транспортированные с нарушением температурного режима, применению не подлежат.

#### **10.2** Хранение

- 10.2.1 Все компоненты набора реагентов следует хранить в холодильнике или холодильной камере при температуре от 2 °C до 8 °C в течение всего срока годности набора реагентов. Смесь для амплификации, запечатанную парафином, следует хранить в защищённом от света месте.
- 10.2.2 Наборы реагентов, хранившиеся с нарушением регламентированного режима, применению не подлежат.

#### 10.3 Указания по эксплуатации

- 10.3.1 Набор реагентов должен применяться согласно действующей версии утвержденной инструкции по применению.
- 10.3.2 Для получения достоверных результатов необходимо строгое соблюдение инструкции по применению набора реагентов.
- 10.3.3 После вскрытия упаковки компоненты набора реагентов следует хранить при следующих условиях:
  - все компоненты набора реагентов следует хранить в холодильнике или холодильной камере при температуре от 2 °C до 8 °C в течение всего срока годности набора реагентов;
  - смесь для амплификации, запечатанную парафином, следует хранить в холодильнике или холодильной камере при температуре от 2 °C до 8 °C в защищённом от света месте в течение всего срока годности набора реагентов.
- 10.3.4 Наборы реагентов с истекшим сроком годности применению не подлежат.



#### 11 УКАЗАНИЯ ПО УТИЛИЗАЦИИ

- **11.1** При использовании набора реагентов в клинико-диагностической лаборатории образуются отходы класса В, которые утилизируются в соответствии с требованиями СанПиН 2.1.3684-21 и МУ 1.3.2569-09.
- **11.2** Наборы реагентов, пришедшие в непригодность, в том числе в связи с истечением срока годности, повреждением упаковки, подлежат утилизации в соответствии с требованиями СанПиН 2.1.3684-21.

#### 12 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- **12.1** Предприятие-изготовитель гарантирует соответствие набора реагентов требованиям технических условий при соблюдении условий транспортирования, хранения и эксплуатации, установленных техническими условиями.
- **12.2** Срок годности набора реагентов 12 месяцев при соблюдении всех условий транспортирования, хранения и эксплуатации.

#### 13 РЕМОНТ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Набор реагентов предназначен для однократного применения и не подлежит техническому обслуживанию и текущему ремонту.

## 14 СИМВОЛЫ, ИСПОЛЬЗУЕМЫЕ ПРИ МАРКИРОВКЕ НАБОРА РЕАГЕНТОВ

| IVD       | Медицинское изделие<br>для диагностики <i>in vitro</i> | REF            | Номер по каталогу                                |
|-----------|--------------------------------------------------------|----------------|--------------------------------------------------|
| 1         | Температурный диапазон                                 | <b></b>        | Изготовитель                                     |
| Σ         | Содержимого достаточно для проведения <n> тестов</n>   | 淤              | Не допускать воздействия<br>солнечного света     |
| $\square$ | Использовать до                                        | NOM<br>STERBLE | Нестерильно                                      |
| LOT       | Код партии (серии)                                     | ا ا            | Обратитесь к инструкции по<br>применению или     |
| M         | Дата изготовления                                      |                | к инструкции по применению в<br>электронном виде |



#### 15 ПЕРЕЧЕНЬ ПРИМЕНЯЕМЫХ НАЦИОНАЛЬНЫХ СТАНДАРТОВ

ГОСТ ISO 14971-2021 Изделия медицинские. Применение менеджмента риска к медицинским изделиям

ГОСТ 15.309-98 Система разработки и постановки продукции на производство. Испытания и приемка выпускаемой продукции. Основные положения

ГОСТ Р 2.105-2019 Единая система конструкторской документации (ЕСКД). Общие требования к текстовым документам

ГОСТ Р 15.013-2016 Система разработки и постановки продукции на производство (СРПП). Медицинские изделия

ГОСТ Р 51088-2013 Медицинские изделия для диагностики ин витро. Реагенты, наборы реагентов, тест-системы, контрольные материалы, питательные среды. Требования к изделиям и поддерживающей документации

ГОСТ Р 51352-2013 Медицинские изделия для диагностики ин витро. Методы испытаний ГОСТ Р ИСО 15190-2023 Лаборатории медицинские. Требования безопасности

ГОСТ Р ИСО 15223-1-2023 Изделия медицинские. Символы, применяемые для передачи информации, предоставляемой изготовителем. Часть 1. Основные требования

ГОСТ Р ИСО 18113-1-2024 Медицинские изделия для диагностики in vitro. Информация, предоставленная изготовителем (маркировка). Часть 1. Термины, определения и общие требования

ГОСТ Р ИСО 18113-2-2024 Медицинские изделия для диагностики in vitro. Информация, предоставленная изготовителем (маркировка). Часть 2. Реагенты для диагностики in vitro для профессионального использования

ГОСТ Р ИСО 23640-2015 Изделия медицинские для диагностики in vitro. Оценка стабильности реагентов для диагностики in vitro

ГОСТ Р 53022.3-2008 Требования к качеству клинических лабораторных исследований, Ч.З. Правила оценки клинической информативности лабораторных тестов.

Примечание – Указанные выше стандарты были действующими на момент утверждения инструкции по применению. В дальнейшем, при пользовании документом, целесообразно проверить действие ссылочных нормативных документов на текущий момент. Если ссылочный документ заменён или изменён, то при применении настоящего документа следует пользоваться заменённым (изменённым) документом.



#### 16 АДРЕС ДЛЯ ОБРАЩЕНИЯ

Производство наборов реагентов имеет сертифицированную систему менеджмента качества и соответствует требованиям стандарта систем менеджмента качества ISO 9001 в области разработки, производства и продажи IVD реагентов и приборов для молекулярногенетической диагностики, и другого лабораторного применения и ISO 13485 в области разработки, производства и продажи IVD реагентов и приборов для медицинской молекулярно-генетической диагностики.

**Производитель:** Общество с ограниченной ответственностью «ДНК-Технология ТС» (ООО «ДНК-Технология ТС»), Россия.

Адрес производителя: 117246, Россия, г. Москва, проезд Научный, д. 20, строение 4.

#### Место производства:

- ООО «ДНК-Технология ТС», 117246, Россия, г. Москва, проезд Научный, д. 20, строение 4.
- ООО «НПО ДНК-Технология»,142281, Россия, Московская область, г.о. Серпухов, г. Протвино, ул. Железнодорожная, д. 3.

По вопросам, касающимся качества набора реагентов, следует обращаться в службу клиентской поддержки.

Служба клиентской поддержки:

8-800-200-75-15 (для России, звонок бесплатный),

+7 (495) 640-16-93 (для стран СНГ и зарубежья, звонок платный).

E-mail: hotline@dna-technology.ru

www.dna-technology.ru



#### Приложение А

# Параметры теста, которые необходимо внести в программное обеспечение детектирующих амплификаторов «ДТпрайм», «ДТпрайм II», «ДТлайт» при использовании набора реагентов HPV 16/18 Комплекс

- 1) Указать количество пробирок в тесте 1;
- 2) Указать объём реакционной смеси 35 мкл;
- 3) В окне «Программа амплификации» ввести следующие параметры:

| №<br>блока                             | Температура, °C | мин | С  | Число циклов | Режим<br>оптических<br>измерений | Тип блока |  |
|----------------------------------------|-----------------|-----|----|--------------|----------------------------------|-----------|--|
| 4                                      | 80              | 0   | 30 | 1            |                                  | Цикл      |  |
| 1                                      | 94              | 1   | 30 |              |                                  |           |  |
|                                        |                 |     |    |              |                                  |           |  |
| 2                                      | 94              | 0   | 30 | 5            |                                  | Писп      |  |
| 2                                      | 64              | 0   | 15 | 3            | <b>√</b>                         | Цикл      |  |
|                                        |                 |     |    |              |                                  |           |  |
| 3                                      | 94              | 0   | 10 | - 45         |                                  | Писп      |  |
|                                        | 64              | 0   | 15 | 43           | <b>✓</b>                         | Цикл      |  |
|                                        |                 |     |    |              |                                  |           |  |
| 4                                      | 94              | 0   | 5  | 1            |                                  | Цикл      |  |
|                                        |                 |     |    |              |                                  |           |  |
| 5                                      | 25 <sup>1</sup> |     |    | Хранение     |                                  | Хранение  |  |
| $\sqrt{}$ – режим оптических измерений |                 |     |    |              |                                  |           |  |

#### 4) Внести следующие параметры каналов детекции:

| Fam   | Hex | Rox | Cy5   | Cy5.5 |
|-------|-----|-----|-------|-------|
| HPV18 | ВК  | -   | HPV16 | -     |

<sup>&</sup>lt;sup>1</sup> – допускается хранение при температуре 10 °C



#### Приложение Б

Сокращённая методика выделения нуклеиновых кислот из исследуемого материала (мазки/соскобы эпителия со слизистой оболочки урогенитального тракта) с использованием комплектов реагентов ПРОБА-НК, ПРОБА-НК-ПЛЮС

#### ВНИМАНИЕ!

- 1. Перед началом работы необходимо:
- включить термостат для прогревания до 65 °C;
- достать из холодильника комплект реагентов для выделения нуклеиновых кислот и проконтролировать отсутствие осадка в лизирующем растворе. В случае выпадения осадка необходимо прогреть флакон с лизирующим раствором на термостате, предварительно прогретом до 65 °C, до полного растворения осадка. Затем следует перемешать раствор переворачиванием флакона вверх дном 5–10 раз, избегая пенообразования. Перед использованием охладите раствор до комнатной температуры (от 18 °C до 25 °C). Осадок также можно растворить при комнатной температуре (от 18 °C до 25 °C) в течение приблизительно 12 часов.
- 2. При прогревании пробирок с образцами возможно открывание крышек! Следует использовать пробирки с защёлкивающимися крышками (например, Eppendorf Safe-Lock Tubes) или программируемые термостаты с прижимной крышкой (например, термостат твердотельный программируемый малогабаритный TT-1-«ДНК-Техн.», ООО «НПО ДНК-Технология», Россия).
- **1.** Промаркируйте одноразовую пластиковую пробирку объёмом 1,5 мл для отрицательного контрольного образца (K–).
- **2.** Добавьте в каждую промаркированную пробирку с подготовленным для исследования материалом в объёме 100 мкл (см. 6.5) и в пробирку, промаркированную «К-», по 300 мкл лизирующего раствора, не касаясь края пробирки.
- **3.** Внесите в пробирку, промаркированную «К-», 100 мкл отрицательного контрольного образца.
- 4. Плотно закройте пробирки, встряхните на микроцентрифуге-вортексе в течение 3–5 с.
- **5.** Термостатируйте пробирки при температуре 65 °С в течение 5 мин.
- 6. Центрифугируйте пробирки на микроцентрифуге-вортексе в течение 3–5 с.
- **7.** Добавьте в каждую пробирку по 400 мкл реагента для преципитации, встряхните на микроцентрифуге-вортексе в течение 3–5 с.
- **8.** Центрифугируйте пробирки при RCF(g) 12000-16000 при комнатной температуре (от 18 °C до 25 °C) в течение 10 мин.
- **9.** Не задевая осадок, полностью удалите надосадочную жидкость (отдельным наконечником из каждой пробирки).
- **10.** Добавьте к осадку по 500 мкл промывочного раствора №1, плотно закройте пробирки и перемешайте, 3–5 раз аккуратно перевернув пробирки.



- **11.** Центрифугируйте пробирки при RCF(g) 12000 16000 при комнатной температуре (от 18 °C до 25 °C) в течение 1 мин.
- **12.** Не задевая осадок, полностью удалите надосадочную жидкость (отдельным наконечником из каждой пробирки).
- **13.** Добавьте к осадку по 300 мкл промывочного раствора №2, плотно закройте пробирки и перемешайте, 3–5 раз аккуратно перевернув пробирки.
- **14.** Центрифугируйте пробирки при RCF(g) 12000 16000 при комнатной температуре (от 18 °C до 25 °C) в течение 1 мин.
- **15.** Не задевая осадок, удалите надосадочную жидкость (отдельным наконечником из каждой пробирки). Допускается оставить жидкость, покрывающую осадок, объёмом не более 20–30 мкл.
- **16.** Откройте пробирки и высушите осадок при температуре 65 °C в течение 5 мин.
- **17.** Добавьте к осадку соответствующее количество буфера для растворения согласно инструкции по применению комплекта реагентов ПРОБА-НК или ПРОБА-НК-ПЛЮС и осадите капли центрифугированием пробирок на микроцентрифуге-вортексе в течение 3–5 с.
- **18.** Термостатируйте пробирки при температуре 65 °C в течение 5 мин. Встряхните пробирки на микроцентрифуге-вортексе в течение 3–5 с.
- **19.** Осадите конденсат центрифугированием при RCF(g) 12000-16000 при комнатной температуре (от 18 °C до 25 °C) в течение 30 с.

Препарат ДНК готов к внесению в реакционную смесь для ПЦР.

Препарат ДНК можно хранить при температуре от минус 22 °C до минус 18 °C не более одного месяца или при температуре от минус 72 °C до минус 68 °C не более одного года.

Перед использованием препарата ДНК для постановки ПЦР после хранения необходимо разморозить препарат ДНК и отрицательный контрольный образец при комнатной температуре (от 18 °C до 25 °C) или при температуре от 2 °C до 8 °C, затем встряхнуть пробирки с препаратом ДНК и отрицательным контрольным образцом на микроцентрифуге-вортексе в течение 3–5 с и центрифугировать на микроцентрифугевортексе в течение 1–3 с.

**ВНИМАНИЕ!** Для препарата ДНК допускается только однократное размораживание! Препарат ДНК готов к внесению в реакционную смесь для ПЦР.