

ИНСТРУКЦИЯ

по применению набора реагентов для амплификации STR маркеров, расположенных на хромосомах 13, 18, 21, X и Y, методом полимеразной цепной реакции для фрагментного анализа с целью пренатальной и постнатальной диагностики хромосомных аномалий плода

QF-PCR Ahey

Регистрационное удостоверение N° P3H 2022/17349 от 27 мая 2022 года

СОДЕРЖАНИЕ

1	ПРЕДНАЗНАЧЕННОЕ ПРИМЕНЕНИЕ	.4
2	ХАРАКТЕРИСТИКА НАБОРА РЕАГЕНТОВ	. 5
3	АНАЛИТИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАБОРА РЕАГЕНТОВ	.7
4	МЕРЫ ПРЕДОСТОРОЖНОСТИ	.9
5	ОБОРУДОВАНИЕ И МАТЕРИАЛЫ1	l 1
6	АНАЛИЗИРУЕМЫЕ ОБРАЗЦЫ1	L2
7	ПРОВЕДЕНИЕ АНАЛИЗА1	۱4
8	АНАЛИЗ ПОЛУЧЕННЫХ ДАННЫХ1	18
9	ТРАНСПОРТИРОВАНИЕ, ХРАНЕНИЕ И ЭКСПЛУАТАЦИЯ2	20
10	УКАЗАНИЯ ПО УТИЛИЗАЦИИ2	21
11	ГАРАНТИИ ИЗГОТОВИТЕЛЯ2	21
12	РЕМОНТ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ2	21
13	СИМВОЛЫ, ИСПОЛЬЗУЕМЫЕ ПРИ МАРКИРОВКЕ НАБОРА РЕАГЕНТОВ	21
14	ПЕРЕЧЕНЬ ПРИМЕНЯЕМЫХ НАЦИОНАЛЬНЫХ СТАНДАРТОВ2	22
16	АДРЕС ДЛЯ ОБРАЩЕНИЯ2	23
Прі	иложение 1	24

СПИСОК СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ

В настоящей инструкции используются следующие сокращения и обозначения:

ПЦР - полимеразная цепная реакция	
К+ - положительный контрольный образец	
К отрицательный контрольный образец	
STR - короткие тандемные повторы (Short Tandem Reapets)	

1 ПРЕДНАЗНАЧЕННОЕ ПРИМЕНЕНИЕ

- 1.1 Полное наименование набора реагентов: Набор реагентов для амплификации STR маркеров, расположенных на хромосомах 13, 18, 21, X и Y, методом полимеразной цепной реакции для фрагментного анализа с целью пренатальной и постнатальной диагностики хромосомных аномалий плода (QF-PCR Aнey), далее по тексту набор реагентов.
- 1.2 Назначение: набор реагентов предназначен для пренатальной диагностики в биологическом материале человека (эпителиальные клетки амниотической жидкости, биоптаты ворсин хориона) и постнатальной диагностики в биологическом материале человека (цельная кровь, секционный материал) хромосомных аномалий трисомий по аутосомам 13,18,21 и анеуплоидий по половым хромосомам X и Y методом полимеразной цепной реакции с последующим проведением фрагментного анализа продуктов амплификации с использованием генетических анализаторов.
- **1.3** Функциональное назначение: диагностика *in vitro*.
- 1.4 Показания к проведению анализа: определение хромосомных нарушений, связанных с наиболее частыми синдромами (Дауна, Патау, Эдвардса, Кляйнфельтера, трисомии по X-хромосоме) для пренатальной и постнатальной диагностики.
 - Противопоказаний к применению нет.
- **1.5** Демографические и популяционные аспекты: применение набора реагентов не зависит от популяционных и демографических аспектов.
- **1.6** Область применения: набор реагентов может быть использован в клиникодиагностических лабораториях медицинских учреждений.
- **1.7** Потенциальные пользователи: квалифицированный персонал, обученный методам молекулярной диагностики и правилам работы в клинико-диагностической лаборатории.
- **1.8** Применять набор реагентов строго по назначению согласно данной инструкции по применению.

2 ХАРАКТЕРИСТИКА НАБОРА РЕАГЕНТОВ

2.1 Состав набора реагентов

Набор реагентов выпускается в фасовке для ручного дозирования (маркируется – фасовка N), в следующих вариантах комплектации:

REF S1-H515-N0/2, Комплектация № 1					
Наименование компонентов	Внешний вид	Количество пробирок	Номинальный объём компонента		
Смесь для амплификации Прозрачная бесцветная QF13 жидкость		1 пробирка	500 мкл		
Смесь для амплификации QF18	Прозрачная бесцветная жидкость	1 пробирка	500 мкл		
Смесь для амплификации QF21	Прозрачная бесцветная жидкость	1 пробирка	500 мкл		
Смесь для амплификации QFXY	Прозрачная бесцветная жидкость	1 пробирка	500 мкл		
Полимераза TexнoTaq MAX	Прозрачная бесцветная вязкая жидкость	1 пробирка	50 мкл		

REF S1-H516-N0/2, Комплектация № 2					
Наименование компонентов	Внешний вид	Количество пробирок	Номинальный объём компонента		
Смесь для амплификации QF13	Прозрачная бесцветная жидкость	1 пробирка	500 мкл		
Смесь для амплификации QF18	Прозрачная бесцветная жидкость	1 пробирка	500 мкл		
Смесь для амплификации QF21	Прозрачная бесцветная жидкость	1 пробирка	500 мкл		
Смесь для амплификации QFXY	Прозрачная бесцветная жидкость	1 пробирка	500 мкл		
Полимераза TexнoTaq MAX	Прозрачная бесцветная вязкая жидкость	1 пробирка	50 мкл		
Положительный контрольный образец	Прозрачная бесцветная жидкость	1 пробирка	75 мкл		

Все компоненты набора реагентов готовы к применению и не требуют дополнительной подготовки к работе.

2.2 Количество анализируемых образцов

Набор реагентов предназначен для однократного применения и рассчитан на 50 определений (включая отрицательные и положительные контрольные образцы).

2.3 Принцип метода

Метод: полимеразная цепная реакция (ПЦР); фрагментный анализ; качественный анализ.

Принцип метода основан на амплификации, детекции и анализе коротких тандемных повторов ДНК, специфичных для каждой хромосомы (STR-маркеров). На каждой хромосоме анализируется по 5 STR-маркеров. Для ПЦР-амплификации используются флуоресцентно-меченные специфические праймеры для отдельных маркеров, по количеству и соотношению высоты пиков, выдаваемых оборудованием для фрагментного анализа, производится оценка числа копий хромосомы.

Использование мультиплексирования праймеров позволяет сократить количество пробирок, поскольку появляется возможность амплификации до 5 участков ДНК в одной пробирке.

Исследование с применением набора реагентов QF-PCR Анеу состоит из следующих этапов: выделение ДНК, получение продуктов амплификации, проведение фрагментного анализа продуктов амплификации.

В таблице 1 приведены выявляемые маркеры и каналы детекции продуктов амплификации при проведении фрагментного анализа.

Charles and and and and and	Выявляемый маркер, канал детекции		
Смесь для амплификации	Fam ¹	Hex ²	
	D13S317	D13S631	
QF13	D13S628	D13S742	
4 . 2 0	D13S305		
	D18S391	D18S978	
QF18	D18S51	D18S499	
	G10321		
	D21S435	D21S437	
QF21	D21S446	D21S11	
Ç	D21S411		
	AMXY	X7132	
QFXY	X8378	XHPRTB	
4 .70	X7423		
_	¹ соответствует каналу детекции В Applied Biosystems 3500;	lue генетического анализатора	
Примечание	² соответствует каналу детекции Green генетического анализатора		

Таблица 1 – Выявляемые маркеры, каналы детекции продуктов амплификации

2.4 Время проведения анализа (включая пробоподготовку, без учета проведения фрагментного анализа): от 2,5 часов.

Applied Biosystems 3500

3 АНАЛИТИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАБОРА РЕАГЕНТОВ

3.1 Предел обнаружения

Предел обнаружения – 20 нг ДНК человека на амплификационную пробирку, что соответствует концентрации ДНК 20 нг/мкл. При использовании меньшего количества ДНК производитель не гарантирует корректную работу набора реагентов.

3.2 Специфичность

Праймеры для ПЦР подобраны с учетом проведения амплификации 5-ти STR-локусов каждой хромосомы в одной пробирке. Длина продуктов амплификации находится в диапазоне от 110 до 450 пар нуклеотидов.

Оценка аналитической специфичности (перекрестной реактивности) *in silico* показала, что выбранные для выявления STR-локусов олигонуклеотиды (праймеры и флуоресцентно-меченые зонды) гомологичны соответствующим участкам ДНК человека, при этом значимая для ПЦР гомология с последовательностями ДНК других STR-локусов не обнаружена.

При оценке видовой специфичности проведенной *in silico* биоинформатическими методами и *in vitro* показано отсутствие неспецифических положительных результатов при наличии в образце нуклеиновых кислот *Chlamydia pneumoniae*, *Candida albicans*, *Gardnerella vaginalis*, *Mycoplasma hominis*, *Neisseria gonorrhoeae*, *Staphylococcus aureus*, Epstein Barr virus (EBV), Cytomegalovirus (CMV), Hepacivirus C (HCV), Hepacivirus B (HBV) в концентрации до 10^8 копий/мл образца.

После проведения фрагментного анализа оценивается количество пиков, соответствующих продуктам амплификации, для каждого маркера и соотношение пиков по высоте, в случае детекции двух аллелей по конкретному маркеру. Анализ количества и соотношений высот пиков позволяет определить наличие или отсутствие трисомий по аутосомам 13, 18, 21 и анеуплоидий по половым хромосомам X и Y.

3.3 Интерферирующие вещества

Максимальные концентрации интерферирующих веществ, при которых не наблюдалось ингибирование ПЦР, представлены в таблице ниже.

Вид биоматериала	Интерферирующее вещество	Исследованная концентрация в образце		
Эндог	енные вещества			
Кровь, биоптаты, секционный материал	Билирубин	684 мкмоль/л		
Кровь, биоптаты, секционный материал	Холестерин	13 ммоль/л		
Кровь, биоптаты, секционный материал	Триглицериды	37 ммоль/л		
Экзогенные вещества				
Кровь	ЭДТА	до 2,0 мг/мл¹		
Кровь, эпителиальные клетки амниотической жидкости, биоптаты, секционный материал	Изопропиловый спирт	10%		
Кровь, эпителиальные клетки амниотической жидкости, биоптаты, секционный материал	Метилацетат	10%		

 $^{^{1-}}$ согласно ГОСТ Р 53079.4-2008 (Технологии лабораторные клинические. Обеспечение качества клинических лабораторных исследований. Часть 4. Правила ведения преаналитического этапа) калия ЭДТА используют в концентрации от 1,2 до 2,0 мг/мл.

3.4 Диагностические характеристики

Диагностические характеристики набора реагентов «QF-PCR Анеу» рассчитаны как доля правильно определенных анеуплоидий по каждой хромосоме (трисомий по 13, 18, 21 хромосомам и анеуплоидий по половым хромосомам) среди всех исследованных образцов.

	Диагностическая чувствительность (%)	Диагностическая специфичность (%)
Трисомия по 13 хромосоме	100% (85,18-100)	100% (96,27-100)
Трисомия по 18 хромосоме	100% (86,77-100)	100% (96,15-100)
Трисомия по 21 хромосоме	100% (90,51-100)	100% (95,65-100)
Анеуплоидии по половым хромосомам X и Y	100% (85,75-100)	100% (96,23-100)

В ходе клинических испытаний было исследовано 120 образцов биоматериала, среди которых было исследовано образцов: с триплоидией – 18 шт.; с трисомией по 13 хромосоме – 5 шт., с трисомией по 18 хромосоме – 8 шт., с трисомией по 21 хромосоме – 19 шт., с анеуплоидиями по половым хромосомам – 6 шт.

3.5 Внутрисерийная и межсерийная воспроизводимость

Внутрисерийная воспроизводимость составляет 100% (95% доверительный интервал 88,43-100%).

Межсерийная воспроизводимость составляет 100% (95% доверительный интервал 88,43-100%).

4 МЕРЫ ПРЕДОСТОРОЖНОСТИ

Организация работы ПЦР-лаборатории, оборудование и материалы должны соответствовать требованиям ГОСТ Р 52905-2007, методических указаний МУ 1.3.2569-09 «Организация работы лабораторий, использующих методы амплификации нуклеиновых кислот, при работе с материалом, содержащим микроорганизмы I-IV групп патогенности», с соблюдением санитарно-эпидемиологических правил и норм СанПиН 3.3686-21 «Санитарно-эпидемиологические требования по профилактике инфекционных болезней».

Исследуемые образцы рассматриваются как потенциально-опасные. При работе с набором реагентов следует надевать одноразовые перчатки без талька.

К работе с набором реагентов допускается персонал, обученный методам молекулярной диагностики и правилам работы в клинико-диагностической лаборатории.

Следует использовать только одноразовые наконечники и пробирки. Не допускается использование одних и тех же наконечников при обработке различных образцов биологического материала.

Для предотвращения контаминации этапы выделения ДНК, ПЦР, детекции продуктов амплификации (фрагментный анализ) следует проводить в раздельных помещениях или тщательно изолированных зонах, снабженных комплектами полуавтоматических дозаторов, халатами и прочими принадлежностями.

Запрещается перемещение лабораторного оборудования, в том числе дозаторов, штативов, лабораторной посуды, халатов, головных уборов и пр., а также растворов реагентов из одного помещения в другое.

Дозаторы должны быть соответствующим образом поверены (в аккредитованных лабораториях) и промаркированы.

Поверхности рабочих столов, а также помещения, в которых проводится ПЦР, следует обязательно, до и после проведения работ, облучать с помощью бактерицидных установок в течение 30 минут.

Использованные одноразовые расходные материалы (пробирки, наконечники и др.) должны сбрасываться в контейнер для медицинских отходов, содержащий дезинфицирующий раствор (при необходимости).

ВНИМАНИЕ! Утилизировать отходы с продуктами ПЦР необходимо только в закрытом виде. Не допускается открывать пробирки после амплификации, за исключением этапов проведения фрагментного анализа, которые проводят в зоне 4 (МУ 1.3.2569-09).

Все поверхности в лаборатории (рабочие столы, штативы, оборудование и др.) ежедневно подвергают влажной уборке с применением дезинфицирующих/моющих средств, регламентированных СанПиН 3.3686-21 «Санитарно-эпидемиологические требования по профилактике инфекционных болезней».

При использовании набора реагентов в клинико-диагностической лаборатории образуются отходы класса В, которые утилизируются в соответствии с требованиями СанПиН 2.1.3684-21 «Санитарно-эпидемиологические требования к содержанию территорий городских и сельских поселений, к водным объектам, питьевой воде и

питьевому водоснабжению, атмосферному воздуху, почвам, жилым помещениям, эксплуатации производственных, общественных помещений, организации и проведению санитарно-противоэпидемических (профилактических) мероприятий».

Опасные компоненты в наборе реагентов

Компонент набора реагентов	Наличие/отсутствие опасного компонента	Указание на риски	
Смесь для амплификации QF13	Нет опасных веществ	-	
Смесь для амплификации QF18	Нет опасных веществ -		
Смесь для амплификации QF21	Нет опасных веществ	-	
Смесь для амплификации QFXY	Нет опасных веществ	-	
Полимераза TexнoTaq MAX	Нет опасных веществ	-	
Положительный контрольный образец	Азид натрия менее 0,1%	является безопасным для конечного пользователя	

При использовании по назначению и соблюдении мер предосторожности контакт с организмом человека исключен. При аварийных ситуациях возможно следующее: раздражение кожи и слизистой оболочки глаз у чувствительных лиц. При контакте промыть пораженное место водой и обратиться за медицинской помощью.

Не допускается использовать набор реагентов:

- при нарушении условий транспортирования и хранения;
- при несоответствии внешнего вида реагентов, указанного в паспорте к набору реагентов;
- при нарушении внутренней упаковки компонентов набора реагентов;
- по истечению срока годности.

Примечание – Набор реагентов **не содержит** материалов биологического происхождения, веществ в концентрациях, обладающих канцерогенным, мутагенным действием, а также влияющих на репродуктивную функцию человека. При использовании по назначению и соблюдении мер предосторожности является безопасным.

5 ОБОРУДОВАНИЕ И МАТЕРИАЛЫ

При работе с набором реагентов требуются следующие оборудование и материалы:

- амплификаторы планшетного типа («ДТпрайм» РУ № ФСР 2011/10229, «ДТлайт» РУ № ФСР 2011/10228, ДТ-96 РУ № ФСР 2007/01250, ООО «НПО ДНК-Технология», Россия);
- оборудование для проведения фрагментного анализа (Анализатор генетический Applied Biosystems 3500, РУ № ФСЗ 2010/07007, «Лайф Текнолоджис Корпорейшн», США);
- маркер длин для проведения фрагментного анализ (Размерный стандарт DS-33 LIZ600 GeneScan; РУ № ФСЗ 2010/07007, «Лайф Текнолоджис Корпорейшн», США);
- Ні-Dі формамид РУ № ФСЗ 2010/07007, «Лайф Текнолоджис Корпорейшн»,
 США;
- дозаторы механические или электронные переменного объёма одноканальные, позволяющие отбирать объём жидкости 0,1-2,5 мкл, 2,0-20 мкл, 20-200 мкл, 200-1000 мкл.

Дополнительное общелабораторное оборудование:

- бокс биологической безопасности II класса;
- ПЦР-бокс;
- центрифуга для пробирок объёмом 1,5 мл, с RCF(g) не более 12000;
- флуориметр или флуоресцентный анализатор;
- термостат твердотельный с таймером TT-2 «Термит» (РУ № ФСР 2012/14090, ООО «НПО ДНК-Технология», Россия);
- микроцентрифуга-вортекс;
- холодильник с морозильной камерой;
- магнитный штатив;
- штатив «рабочее место» для стрипованных пробирок объёмом 0,2 мл;
- штатив «рабочее место» для пробирок объёмом 0,5, 1,5 мл и 2,0 мл;
- штатив для дозаторов.

Дополнительные расходные материалы:

- одноразовые наконечники с фильтром, свободные от РНКаз и ДНКаз, вместимостью 10 мкл, 20 мкл, 200 мкл, 1000 мкл;
- пробирки микроцентрифужные объёмом 1,5 мл с крышками, свободные от РНКаз и ДНКаз;
- одноразовые пробирки объёмом 0,2 мл, 0,5 мл, 2,0 мл, свободные от РНКаз и ДНКаз;
- одноразовые перчатки медицинские, без талька, текстурированные;
- ёмкость для сброса использованных наконечников, пробирок и других расходных материалов;

- дезинфицирующее средство;
- транспортная среда (при необходимости);
- набор/комплект реагентов для выделения ДНК (рекомендуется использовать для цельной крови Набор реагентов для выделения ДНК ПРОБА-МЧ МАКС, ООО «ДНК-Технология ТС», Россия, РУ № РЗН 2021/14391; для эпителиальных клеток амниотической жидкости, биоптатов, секционного материала Комплект реагентов для выделения ДНК по ТУ 9398-037-46482062-2009 в следующих формах комплектации: ПРОБА-ГС, ПРОБА-ГС-ПЛЮС, ПРОБА-ГС-ГЕНЕТИКА (форма комплектации ПРОБА-ГС), ООО «НПО ДНК-Технология», РУ № ФСР 2010/08696)

6 АНАЛИЗИРУЕМЫЕ ОБРАЗЦЫ

6.1 Материал для исследования

Для исследования используют эпителиальные клетки амниотической жидкости, цельную кровь, биоптаты (включая секционный материал).

Минимальное количество биоматериала, необходимое для исследования:

- Эпителиальные клетки амниотической жидкости 100 мкл осадка после центрифугирования не менее 1,0-2,0 мл амниотической жидкости;
- Кровь 100 мкл;
- Биоптаты (в т.ч. секционный материал) 0,05 0,15 г.

Ограничение метода - внутривенные инъекции гепарина, инфузии препаратов для парентерального питания менее чем за 6 часов до исследования; переливание крови и её компонентов менее чем за 24 часа до исследования.

Взятие, предобработку и хранение материала проводят в соответствии с инструкциями к комплектам/наборам реагентов для выделения ДНК из соответствующего биологического материала.

6.2 Взятие материала на исследование

ВНИМАНИЕ! Перед выделением ДНК требуется предварительная обработка образцов биологического материала (6.4).

6.2.1 Амниотическая жидкость

Взятие амниотической жидкости производят в ходе процедуры амниоцентеза, согласно утвержденному алгоритму проведения. Отбор аликвоты материала проводят в сухой стерильный контейнер, снабженный герметично завинчивающейся крышкой, в количестве не менее 1,0-2,0 мл.

После сбора контейнер плотно закрывают и маркируют.

6.2.2 Биоптаты, секционный материал

Взятие материала осуществляют в одноразовые, плотно завинчивающиеся стерильные пробирки объёмом 1,5 мл с транспортной средой, предназначенной производителем для транспортирования и хранения образцов биологического материала для ПЦР-исследований.

После взятия материала пробирку плотно закрывают крышкой и маркируют.

6.2.3 Кровь

Взятие цельной периферической крови проводится в вакуумные пластиковые пробирки типа Vacuette объёмом 9,0 мл с добавленной в качестве антикоагулянта солью этилендиаминтетраацетата (ЭДТА) в конечной концентрации 2,0 мг/мл.

Для перемешивания крови с антикоагулянтом после взятия материала необходимо перевернуть пробирку 2 – 3 раза.

ВНИМАНИЕ! Не допускается использование гепарина в качестве антикоагулянта.

6.3 Транспортирование и хранение исследуемых образцов

6.3.1 Амниотическая жидкость

Образцы амниотической жидкости допускается транспортировать и хранить:

- при температуре от 2 °C до 8 °C не более одних суток;
- при температуре от минус 18 °C до минус 20 °C не более одной недели;
- при температуре минус 70 °C длительно.

ВНИМАНИЕ! Допускается лишь однократное замораживание-оттаивание материала.

6.3.2 Биоптаты, секционный материал

Биоптаты допускается транспортировать и хранить:

- при температуре от 2 °C до 8 °C не более одних суток;
- при температуре от минус 18 °C до минус 20 °C не более одной недели;
- при температуре минус 70 °C длительно.

ВНИМАНИЕ! Допускается лишь однократное замораживание-оттаивание материала.

6.3.3 Кровь

Транспортировать и хранить образцы в вакуумных пластиковых пробирках типа Vacuette до начала исследования следует при температуре от 2 °C до 8 °C не более одних суток. В случае невозможности доставки материала в лабораторию в течение суток допускается однократное замораживание материала. Допускается хранение замороженного материала при температуре минус 20 °C в течение одного месяца.

6.4 Подготовка биологического материала человека для исследования.

ВНИМАНИЕ! Относительное ускорение центрифуги (RCF или g) зависит от частоты вращения и радиуса центрифугирования. Для определения соответствия центрифуги заданным параметрам центрифугирования обратитесь к руководству по эксплуатации.

6.4.1 Амниотическая жидкость, кровь

Подготовка образцов крови для исследования проводится согласно инструкции к используемому комплекту/набору реагентов для выделения ДНК (7.1).

- 6.4.2 Биоптаты, секционный материал
- 6.4.2.1 Центрифугируйте пробирку при RCF(g) 16000 в течение 10 мин.
- 6.4.2.2 Удалите надосадочную жидкость, оставив в пробирке объем (осадок + жидкая фракция), рекомендованный производителем набора (комплекта) реагентов для выделения ДНК из соответствующего биоматериала.

7 ПРОВЕДЕНИЕ АНАЛИЗА

7.1 Выделение ДНК из биологического материала

Для выделения ДНК рекомендуется использовать набор/комплект реагентов для выделения ДНК (рекомендуется использовать для цельной крови Набор реагентов для выделения ДНК ПРОБА-МЧ МАКС, ООО «ДНК-Технология ТС», Россия, РУ № РЗН 2021/14391; для эпителиальных клеток амниотической жидкости, биоптатов, секционного материала Комплект реагентов для выделения ДНК по ТУ 9398-037-46482062-2009 в следующих формах комплектации: ПРОБА-ГС, ПРОБА-ГС-ПЛЮС, ПРОБА-ГС-ГЕНЕТИКА (форма комплектации ПРОБА-ГС), ООО «НПО ДНК-Технология», РУ № ФСР 2010/08696).

Выделение ДНК из исследуемого материала проводят в соответствии с инструкцией к используемому комплекту/набору реагентов.

ВНИМАНИЕ! Одновременно с выделением ДНК из биологического материала необходимо использовать отрицательный контрольный образец и провести его через все этапы пробоподготовки. В качестве отрицательного контрольного образца рекомендуется использовать физиологический раствор или отрицательный контрольный образец, входящий в состав набора/комплекта реагентов для выделения ДНК, в объёме, указанном в инструкции к набору/комплекту реагентов.

Примечание – Допускается хранение ДНК при температуре от 2 °C до 8 °C не более 1 месяца или от минус 18 °C до минус 22 °C не более 6 месяцев.

7.2 Подготовка и проведение ПЦР

ВНИМАНИЕ! При проведении всех последующих действий следует избегать воздействия прямых солнечных лучей на пробирки со смесью для амплификации!

- 7.2.1 Встряхните пробирки со смесями для амплификации и положительным контрольным образцом в течение 3-5 с на микроцентрифуге-вортексе и центрифугируйте в течение 1-3 с на микроцентрифуге-вортексе.
- 7.2.2 Промаркируйте необходимое количество одноразовых пустых пробирок объёмом 0,2 мл для каждого исследуемого образца, положительного контрольного образца и отрицательного контрольного образца.

Например: необходимо проанализировать три образца. Нужно промаркировать 12 пробирок для исследуемых образцов, 4 пробирки для «К-» и 4 пробирки для «К+». Общее количество пробирок – 20 (таблица 2).

Таблица 2 - Пример маркировки пробирок для проведения ПЦР

№ образца	№ амплификационной	Наименование вносимой смеси для
тт- образца	пробирки	амплификации
	1-13	QF13
Ofpagou 1	1-18	QF18
Образец 1	1-21	QF21
	1-XY	QFXY
	2-13	QF13
0622201.2	2-18	QF18
Образец 2	2-21	QF21
	2-XY	QFXY
	3-13	QF13
0622201.3	3-18	QF18
Образец 3	3-21	QF21
	3-XY	QFXY
	K- 13	QF13
16	K- 18	QF18
K-	K- 21	QF21
	K- XY	QFXY
	K+ 13	QF13
16.	K+ 18	QF18
K+	K+ 21	QF21
	K+ XY	QFXY

Примечание - Далее в тексте инструкции используется следующее обозначение для промаркированных пробирок:

№ образца	№ амплификационной пробирки для образца А	Наименование вносимой смеси для амплификации
	A-13	QF13
Of nancy A	A-18	QF18
Образец А	A-21	QF21
	A-XY	QFXY

где А – номер исследуемого образца

7.2.3 Встряхните пробирку с полимеразой ТехноТаq MAX» в течение 3-5 с на микроцентрифуге-вортексе и центрифугируйте в течение 1-3 с на микроцентрифуге-вортексе.

Примечание – Полимеразу ТехноТаq MAX необходимо вынимать из морозильной камеры непосредственно перед использованием.

- 7.2.4 Приготовьте смеси полимеразы ТехноТаq MAX со смесями для амплификации. Для этого промаркируйте четыре одноразовые пробирки объёмом 0,5 мл «QF13», «QF18», «QF21» и «QFXY».
- 7.2.5 Смешайте в пробирке «QF13»:
 - 10 x (N+1) мкл смеси для амплификации QF13,
 - 0,2 x (N+1) мкл полимеразы TexhoTaq MAX,

где N - количество исследуемых образцов с учётом «К-» и «К+».

- 7.2.6 Смешайте в пробирке «QF18»:
 - 10 x (N+1) мкл смеси для амплификации QF18,
 - 0,2 x (N+1) мкл полимеразы ТехноТад МАХ,

где N - количество исследуемых образцов с учётом «К-» и «К+».

- 7.2.7 Смешайте в пробирке «QF21»:
 - 10 x (N+1) мкл смеси для амплификации QF21,
 - 0,2 x (N+1) мкл полимеразы TexhoTaq MAX,

где N - количество исследуемых образцов с учётом «К-» и «К+».

- 7.2.8 Смешайте в пробирке «QFXY»:
 - 10 x (N+1) мкл смеси для амплификации QFXY,
 - 0,2 х (N+1) мкл полимеразы ТехноТаq MAX,

где N - количество исследуемых образцов с учётом «К-» и «К+».

- 7.2.9 Закройте крышки пробирок, встряхните пробирки в течение 3-5 с на микроцентрифуге-вортексе и центрифугируйте в течение 1-3 с на микроцентрифуге-вортексе.
- 7.2.10 Внесите в каждую пробирку «А 13», промаркированную для внесения смеси QF13, по 10 мкл смеси для амплификации QF13 с полимеразой ТехноТаq MAX.
- 7.2.11 Внесите в каждую пробирку «А 18», промаркированную для внесения смеси QF18, по 10 мкл смеси для амплификации QF18 с полимеразой ТехноТад MAX.
- 7.2.12 Внесите в каждую пробирку «A 21», промаркированную для внесения смеси QF21 по 10 мкл смеси для амплификации QF21 с полимеразой ТехноТаq MAX.
- 7.2.13 Внесите в каждую пробирку «А XY», промаркированную для внесения смеси QFXY по 10 мкл смеси для амплификации QFXY с полимеразой ТехноТаq MAX.

ВНИМАНИЕ! Для предотвращения контаминации следует перед внесением ДНК открывать крышки только тех пробирок, в которые будет вноситься данный образец, и закрывать их перед внесением следующего. Закрывайте пробирки плотно. Препараты ДНК и «контрольные образцы следует вносить наконечниками с фильтром.

- 7.2.14 Внесите по 1,0 мкл препарата ДНК в соответствующие пробирки для исследуемых образцов. В пробирки «К-» и «К+» ДНК не вносится.
- 7.2.15 Внесите по 1,0 мкл отрицательного контрольного образца, прошедшего этап выделения ДНК, в пробирки, маркированные «К-».
- 7.2.16 Внесите по 1,0 мкл положительного контрольного образца в пробирки, маркированные «К+».
- 7.2.17 Встряхните все пробирки в течение 1-3 с на микроцентрифуге-вортексе и центрифугируйте 1-3 с на микроцентрифуге-вортексе.
- 7.2.18 Установите все пробирки в блок амплификатора и проведите ПЦР-амплификацию с учетом объёма реакционной смеси, равного 10 мкл. Программа амплификации приведена в таблице 3.
- 7.2.19 После окончания амплификации извлеките пробирки с продуктами амплификации из амплификатора и поместите на рабочий стол.

Продукты амплификации готовы к проведению фрагментного анализа.

Таблица 3 – Режим амплификации для амплификаторов с активным регулированием и подогреваемой крышкой

№ блока	Температура, °С	мин	сек	Число циклов	Тип блока
1	80,0	2	00	1	цикл
2	94,0	5	00	1	цикл
3	94,0	0	30	5	LUAICE
3	66,0	0	15	3	цикл
4	94,0	0	10	20	LUAICE
4	66,0	0	15	20	цикл
5	72	20	0	1	цикл
6	10,0	хранение хране		хранение	

7.3 Проведение фрагментного анализа

Фрагментный анализ следует проводить с использованием Анализатора генетического Applied Biosystems 3500 согласно приложению 1 к данной инструкции и руководству к генетическому анализатору.

Регистрация результатов фрагментного анализа проводится прибором автоматически во время проведения фрагментного анализа.

8 АНАЛИЗ ПОЛУЧЕННЫХ ДАННЫХ

Анализ данных фрагментного анализа осуществляется с помощью программного обеспечения, поставляемого с генетическим анализатором Applied Biosystems 3500, согласно руководству для экспериментов по фрагментному анализу GeneMapper.

При анализе данных фрагментного анализа продуктов амплификации обнаруживается пять групп пиков. Каждая группа пиков соответствует определенному маркеру и расположена в пределах, указанных в таблице длин маркеров. (таблица 4). В группе пиков, соответствующей определенному маркеру, может обнаруживаться от одного до трех пиков.

При интерпретации учитывается:

- количество пиков в группе,
- соотношении высот пиков в группе относительно друг друга.

ВНИМАНИЕ! Результаты фрагментного анализа могут считаться достоверными только при условии выявления всех пиков, характерных для размерного стандарта DS-33 LIZ600 GeneScan, по каналу детекции «Orange». В случае отсутствия хотя бы одного из пика размерного стандарта DS-33 LIZ600 GeneScan результаты исследования недостоверны. Необходимо повторное проведение фрагментного анализа и/или амплификации исследуемого образца.

Таблица 4 - Маркер и диапазон длин соответствующих ему продуктов ПЦР

Маркер	Диапазон длин продуктов ПЦР, п.н.
D13S317	166-190
D13S631	235-255
D13S628	238-274
D13S742	295-340
D13S305	431-466
D18S391	173-185
D18S978	257-272
D18S51	286-328
D18S499	340-372
G10321	415-448
D21S435	168-188
D21S437	204-237
D21S446	244-266
D21S11	308-346
D21S411	362-408
AMXY	106-112
X8378	127-151
X7132	150-174
X7423	199-223
XHPRTB	282-318

Интерпретация результатов фрагментного анализа приведена в таблицах 5 и 6.

Таблица 5 - Интерпретация данных фрагментного анализа для маркеров аутосомных хромосом 13, 18, 21 (D13S317, D13S628, D13S305, D13S631, D13S742, D18S391, D18S51, G10321, D18S978, D18S499, D21S435, D21S446, D21S411, D21S437, D21S11)

Количество пиков	Соотношение высот пиков	Результат анализа по маркеру
0	-	Нет данных
1	-	Неинформативно
2	1:1	Норма
2	2:1 (1:2)	Трисомия
3	не учитывается	Трисомия
> 3	не учитывается	Недостоверно

Таблица 6 – Интерпретация данных фрагментного анализа для аутосомных хромосом 13, 18, 21 на основании результатов по маркеру (таблица 5)

Результат по маркеру	Количество маркеров	Результат анализа по хромосоме
Нет данных	≥3	Недостоверно
Неинформативно	≥3	Неинформативно
Норма	>3	Норма
Трисомия	>3	Трисомия
Недостоверно	≥1	Недостоверно

Таблица 7 – Интерпретация данных фрагментного анализа для маркера половых хромосом X и Y (AMXY, X8378, X7423, X7132, XHPRTB)

Количество пиков в маркере		ков в маркере			
AMXY		Остальные половые маркеры	Результат анализа по хромосоме		
0		не учитывается	Недостоверно		
1		0 Недостоверно, определен только по			
		1	Моносомия X0 ¹ /(Норма, XX)		
		2	Норма, XX		
		3	Трисомия (XXX)		
		> 3	Недостоверно		
2		0 Недостоверно, определен только пол ()			
		1 Норма, ХҮ			
		2	Анеуплоидия (XXY) ¹		
		3	Анеуплоидия (XXXY)¹		
		> 3	Недостоверно		
> 2	> 2 не учитывается		Недостоверно		
Примечание:	наличие гомозигот по всем половым маркерам может свидетельствовать о моносомии по X хромосоме, однако статистически вероятно и совпадение аллелей по каждому из половых маркеров на двух (или более) X-хромосомах при наличии двух (или более) X-хромосом, поэтому диагностика анеуплодий по X-хромосоме в этом случае только по результатам, полученным с использованием набора регентов QF-PCR Анеу не может быть полностью достоверной и требует альтернативных методов анализа.				

9 ТРАНСПОРТИРОВАНИЕ, ХРАНЕНИЕ И ЭКСПЛУАТАЦИЯ

9.1 Транспортирование

- 9.1.1 Транспортирование набора реагентов осуществляют в термоконтейнерах с хладоэлементами всеми видами крытого транспорта при температуре внутри контейнера, соответствующей условиям хранения компонентов, входящих в состав набора реагентов.
- 9.1.2 Допускается транспортирование в термоконтейнерах с хладоэлементами всеми видами крытого транспорта при температуре от 2 °C до 25 °C внутри контейнера не более 5 суток.
- 9.1.3 Наборы реагентов, транспортированные с нарушением температурного режима, применению не подлежат.

9.2 Хранение

- 9.2.1 Набор реагентов следует хранить в морозильной камере при температуре от минус 18 °C до минус 22 °C в течение всего срока годности.
- 9.2.2 Наборы реагентов, хранившиеся с нарушением регламентированного режима, применению не подлежат.
- 9.3 Указания по эксплуатации
- 9.3.1 Набор реагентов должен применяться согласно действующей версии утвержденной инструкции по применению.
- 9.3.2 Для получения достоверных результатов необходимо строгое соблюдение инструкции по применению набора реагентов.
- 9.3.3 После вскрытия упаковки компоненты набора реагентов следует хранить при следующих условиях:
 - компоненты набора реагентов, за исключением полимеразы ТехноТаq MAX, следует хранить в холодильнике или холодильной камере при температуре от 2 °C до 8 °C в течение всего срока годности набора реагентов;
 - смеси для амплификации QF13, QF18, QF21, QFXY следует хранить в холодильнике или холодильной камере при температуре от 2 °C до 8 °C в защищенном от света месте в течение всего срока годности набора реагентов;
 - полимеразу ТехноТаq MAX следует хранить в морозильной камере при температуре от минус 18 °C до минус 22 °C в течение всего срока годности набора реагентов.
- 9.3.4 Наборы реагентов с истекшим сроком годности применению не подлежат.

10 УКАЗАНИЯ ПО УТИЛИЗАЦИИ

- **10.1** При использовании набора реагентов в клинико-диагностической лаборатории образуются отходы класса В, которые утилизируются в соответствии с требованиями СанПиН 2.1.3684-21 и МУ 1.3.2569-09.
- **10.2** Наборы реагентов, пришедшие в непригодность, в том числе в связи с истечением срока годности, повреждением упаковки подлежат утилизации в соответствии с требованиями СанПиН 2.1.3684-21.

11 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- **11.1** Предприятие-изготовитель гарантирует соответствие набора реагентов требованиям технических условий при соблюдении условий транспортирования, хранения и эксплуатации, установленных техническими условиями.
- **11.2** Срок годности набора реагентов и контрольных образцов к набору 12 месяцев при соблюдении всех условий транспортирования, хранения и эксплуатации.

12 РЕМОНТ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Набор реагентов предназначен для однократного использования и не подлежит техническому обслуживанию и текущему ремонту.

13 СИМВОЛЫ, ИСПОЛЬЗУЕМЫЕ ПРИ МАРКИРОВКЕ НАБОРА РЕАГЕНТОВ

IVD	Медицинское изделие для диагностики <i>in vitro</i>	[]i	Обратитесь к инструкции по применению
*	Температурный диапазон	REF	Каталожный номер
Σ	Количество тестов		Адрес изготовителя
\square	Годен до	溇	Не допускается воздействие солнечного света
LOT	Номер серии		Носторияние
·	Дата изготовления	NON	Нестерильно

14 ПЕРЕЧЕНЬ ПРИМЕНЯЕМЫХ НАЦИОНАЛЬНЫХ СТАНДАРТОВ

ГОСТ 2.105-2019 Единая система конструкторской документации (ЕСКД). Общие требования к текстовым документам.

ГОСТ ISO 14971-2011 Изделия медицинские. Применение менеджмента риска к медицинским изделиям.

ГОСТ Р 15.013-2016 Система разработки и постановки продукции на производство (СРПП). Медицинские изделия.

ГОСТ 15.309-98 Система разработки и постановки продукции на производство. Испытания и приёмка выпускаемой продукции. Основные положения.

ГОСТ Р 51088-2013 Медицинские изделия для диагностики ин витро. Реагенты, наборы реагентов, тест-системы, контрольные материалы, питательные среды. Требования к изделиям и поддерживающей документации.

ГОСТ Р 51352-2013 Медицинские изделия для диагностики ин витро. Методы испытаний.

ГОСТ Р ИСО 18113-1-2015 Медицинские изделия для диагностики in vitro. Информация, предоставляемая изготовителем (маркировка). Часть 1. Термины, определения и общие требования.

ГОСТ Р ИСО 18113-2-2015 Медицинские изделия для диагностики in vitro. Информация, предоставляемая изготовителем (маркировка). Часть 2. Реагенты для диагностики in vitro для профессионального применения.

ГОСТ Р ИСО 23640-2015 Изделия медицинские для диагностики in vitro. Оценка стабильности реагентов для диагностики in vitro.

ГОСТ Р ИСО 15223-1-2020. Изделия медицинские. Символы, применяемые при маркировании медицинских изделий, на этикетках и в сопроводительной документации. Часть 1. Основные требования.

ГОСТ Р 52905-2007 (ИСО 15190:2003) Лаборатории медицинские. Требования безопасности.

Примечание:

Указанные выше стандарты являлись действующими на момент утверждения инструкции по применению. В дальнейшем, при пользовании документа, целесообразно проверить действие ссылочных нормативных документов на текущий момент. Если ссылочный документ заменён или изменён, то при применении настоящего документа следует пользоваться заменённым (изменённым) документом.

16 АДРЕС ДЛЯ ОБРАЩЕНИЯ

Производство наборов реагентов имеет сертифицированную систему менеджмента качества и соответствует требованиям стандарта систем менеджмента качества ISO 9001 в области разработки, производства и продажи IVD реагентов и приборов для молекулярногенетической диагностики, и другого лабораторного применения, и EN ISO 13485 в области разработки, производства и продажи IVD реагентов и приборов для медицинской молекулярно-генетической диагностики.

Производитель: Общество с ограниченной ответственностью «ДНК-Технология ТС»; ООО «ДНК-Технология ТС», Россия.

Адрес производителя: 117246, Россия, г. Москва, проезд Научный, д. 20, стр. 4.

Место производства: ООО «ДНК-Технология ТС»: 117246, Россия, г. Москва, проезд Научный, д. 20, стр.4.

По вопросам, касающимся качества набора реагентов QF-PCR Анеу, следует обращаться в службу клиентской поддержки.

Служба клиентской поддержки:

8-800-200-75-15 (для России, звонок бесплатный),

+7 (495) 640-16-93 (для стран СНГ и зарубежья, звонок платный).

E-mail: hotline@dna-technology.ru,

www.dna-technology.ru

Номер: 668 2022-05-31

Проведение фрагментного анализа

Для проведения фрагментного анализа используются продукты амплификации, полученные с использованием набора реагентов QF-PCR Aney.

I. Подготовка к проведению фрагментного анализа

Проведение фрагментного анализа проводится в соответствии с руководством к анализатору генетическому Applied Biosystems 3500 (РУ № ФСЗ 2010/07007).

Для подготовки к проведению фрагментного анализа требуются следующие реагенты и расходные материалы:

- термостат твердотельный с таймером TT-2 «Термит» (РУ № ФСР 2012/14090, ООО «НПО ДНК-Технология», Россия);
- центрифуга с RCF(g) не ниже 500, с адаптером для микропланшет ПЦР (96 лунок);
- маркер длин для проведения фрагментного анализа, например, размерный стандарт DS-33 LIZ600 GeneScan; «Лайф Текнолоджис Корпорейшн», США);
- Hi-Di формамид, «Лайф Текнолоджис Корпорейшн», США;
- плашки реакционные оптические 96-луночные. MicroAmp, «Лайф Текнолоджис Корпорейшн», США;
- контейнер для замораживания, например, штатив IsoFreeze (+7°C) для пробирок 0,2 мл, стрипов и планшетов на 96 мест или другое аналогичное оборудование;
- септа для 96-луночных планшетов для анализаторов генетических Applied Biosystems 3500;
- одноразовые пробирки объёмом 1,5 мл.

1. Подготовка смесей для проведения фрагментного анализа

1.1 Приготовьте смесь для проведения фрагментного анализа.

Для этого смешайте в отдельной пробирке на 1,5 мл:

- 10 мкл Ні-Dі формамида *Y;
- 0,2 мкл маркера длин для проведения фрагментного анализа *Y,

где Y – количество амплификационных пробирок с продуктами амплификации (для исследования 1 образца используется 4 амплификационные пробирки).

Конечный объём смеси для проведения фрагментного анализа должен быть достаточен для заполнения всех лунок одного ряда реакционной оптической плашки, из которых будут происходить инъекций при проведении фрагментного анализа с использованием анализатора генетического Applied Biosystems 3500, в том числе и лунки, не содержащие продукты амплификации.

- **1.2** Встряхните пробирку со смесью для проведения фрагментного анализа в течение 3-5 с на микроцентрифуге-вортексе и центрифугируйте в течение 1-3 с на микроцентрифуге-вортексе.
- **1.3** Внесите в каждую лунку реакционной оптической плашки по 10 мкл смеси для проведения фрагментного анализа.
- **1.4** Добавьте в каждую лунку реакционной оптической плашки 0,5 мкл продукта амплификации и перемешайте пипетированием 5-7 раз.
- **1.5** При образовании пузырей на дне лунок центрифугируйте плашку в течение 1-3 с.
- **1.6** Накройте плашку резиновой септой.
- **1.7** Проведите температурную денатурацию образцов. Для этого:
- 1.7.1 Поместите плашку на предварительно прогретый до 95°C термостат.
- 1.7.2 Прогрейте плашку при температуре 95°С в течение 2 минут.

Примечание - В случае если не используется специализированный штатив, необходимо подготовить ледяную баню. Ледяная баня состоит из ёмкости, в которую насыпается кусковой лёд из воды, помещается штатив для пробирок с открытым дном и наливается холодная вода. Ледяная смесь не должна доходить до крышек пробирок приблизительно 5 мм.

1.7.3 Поместите плашку в охлаждающий штатив на 40-50 с.

ВНИМАНИЕ! Плашку необходимо перенести в штатив сразу после термостатирования!

В случае образования кристаллов льда в лунках плашки оставьте плашку при комнатной температуре (от 18 °C до 25 °C) на 2-5 минут до полного растаивания кристаллов льда.

- **1.8** Поместите плашку в анализатор генетический Applied Biosystems 3500 в соответствии с руководством к прибору.
- II. Проведите запуск анализатора генетического Applied Biosystems 3500 согласно руководству к прибору.