

ЗАЧЕМ ИДЕНТИФИЦИРОВАТЬ ВОЗБУДИТЕЛЕЙ РЕСПИРАТОРНЫХ ИНФЕКЦИЙ?

Основными возбудителями респираторных инфекций являются вирусы и бактерии. Лечение таких инфекций зависит от этиологии возбудителя, характера течения заболевания, тяжести прогнозируемых осложнений и может быть как симптоматическим, так и включать специфические противовирусные препараты и антибиотики. Для эффективного и быстрого подбора терапии необходима лабораторная диагностика, позволяющая определить природу и вид возбудителя.

Среди вирусных инфекций важно дифференцировать высококонтагиозные и тяжело протекающие COVID-19 и грипп. Расширенная лабораторная диагностика требуется для пациентов из групп риска тяжелого течения ОРВИ: беременных женщин, женщин в послеродовой период, детей, пожилых людей, пациентов с хроническими заболеваниями легких, печени, сердеч-

но-сосудистой, мочевыделительной систем, нарушением обмена веществ, иммунодефицитами и др.

причиной респираторных инфекций, так и присоединяться к уже протекающей инфекции. Наиболее частыми осложнениями являются отиты, синуситы, бронхиты, пневмонии, обострения хронических процессов. Их лечение осложняется вследствие приобретенной резистентности к антибактериальным препаратам, что нужно учитывать при подборе терапии.

Бактериальные инфекции могут быть как самостоятельной

ПЦР-исследование позволяет определить возбудителей вирусной и бактериальной природы, вызывающих респираторные инфекции.

Компания «ДНК-Технология» представляет линейку наборов реагентов для ПЦР-диагностики респираторных инфекций

ВИРУСНЫЕ ИНФЕКЦИИ

К острым респираторным вирусным инфекциям (ОРВИ) относят заболевания вирусной этиологии, поражающие верхние и нижние дыхательные пути.

Возбудители ОРВИ — представители РНК-содержащих (пневмовирусы, парамиксовирусы, коронавирусы, пикорнавирусы, ортомиксовирусы) и ДНК-содержащих вирусов (аденовирусы и парвовирусы).

- Э Лицам с симптомами ОРВИ рекомендовано проведение молекулярно-генетического исследования методом ПЦР на возбудителя COVID-19 или экспресс-тест на COVID-19 для проведения дифференциальной диагностики у всех заболевших.
- □ Пациентам с симптомами ОРВИ рекомендовано молекулярнобиологическое исследование мазков со слизистой оболочки носои ротоглотки на вирус гриппа, парагриппа, риновирусы, аденовирус, респираторно-синцитиальный вирус, коронавирусы 229Е, ОС43, NL63, HKU1, бокавирус, метапневмовирус на амбулаторном этапе по клинико-эпидемиологическим показаниям, в стационаре — всем заболевшим.
- ⇒ В период сезонного подъема заболеваемости гриппом и ОРВИ всем госпитализированным пациентам с признаками ОРВИ рекомендуется проводить лабораторное тестирование на SARS-COV-2 и грипп.
- Лицам с симптомами гриппоподобного заболевания рекомендовано определение РНК вируса гриппа А в мазках со слизистой оболочки носоглотки методом ПЦР; определение РНК вируса гриппа В в мазках со слизистой оболочки носоглотки методом ПЦР для своевременного назначения этиотропной терапии.

Клинические рекомендации МЗ РФ «Острые респираторные вирусные инфекции (ОРВИ) у взрослых», 2021 г., «Грипп у взрослых», 2022 г.; Временные методические рекомендации профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19), версия 18, 2023 г.

Э Дифференциальная диагностика ОРВИ, в том числе гриппа и COVID-19, необходима для оценки тяжести течения заболевания и прогнозирования осложнений, а также для предотвращения внутрибольничного заражения. Диагностика респираторно-синцитиальной инфекции, вызывающей поражение нижних отделов дыхательной системы, имеет особую клиническую значимость у детей младшего возраста. При проведении дифференциальной диагностики необходимо учитывать данные эпидемиологического анамнеза, клинические симптомы и их динамику.

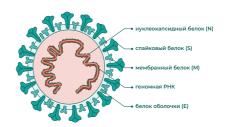
Наборы реагентов для ОТ-ПЦР-исследования (one-step)	Биоматериал	Набор для выделения НК
SARS-CoV-2 / SARS-CoV SARS-CoV-2 / Грипп Комплекс SARS-CoV-2 / RSV / Грипп Комплекс Грипп Комплекс Крипп Комплекс А/В Грипп А Комплекс Н1N1pdm09/H3N2 Вирус Гриппа А Н1N1pdm09 Вирус Гриппа А Вирус Гриппа В ОРВИ Комплекс ОРВИ Скрин от 2 ч (с учетом пробоподготовки)	Мазки из носоглотки, ротоглотки	ПРОБА-НК* ПРОБА-НК-ПЛЮС* ПРОБА-НК-S ПРОБА-МЧ-НК-S ПРОБА-МЧ-DWP
	 Бронхоальвеолярный лаваж Мокрота Эндотрахеальный, назофарингеальный аспират 	ПРОБА-НК ПРОБА-НК-ПЛЮС
SARS-CoV-2 Лайт от 1,5 ч	Мазки из носоглотки, ротоглотки	Без этапа выделения

Рекомендуемые транспортные среды: СТОР-Ф

Рекомендуемое оборудование: амплификаторы серии ДТ

(ООО «НПО ДНК-Технология»)

Возможность адаптации:


Оборудование		CoV-2	CoV-2/ Грипп	CoV-2/	Комп- лекс			Вирус Гриппа А H1N1pdm09	Грипп А Комплекс H1N1pdm09/ H3N2		ОРВИ Скрин
CFX96 (Bio-Rad)	✓	✓	✓	-	✓	✓	✓	✓	✓	_	✓
Rotor-Gene Q (QIAGEN)	✓	-	-	-	-	✓	✓	✓	_	-	-
Quant Studio 5 (Applied Biosystems)	✓	✓	-	-	-	√	√	√	-	-	-
Возможность автоматизации	✓	-	-	-	-	✓	✓	✓	-	-	-

^{*} Для мазков из носоглотки и ротоглотки возможно использование сокращенной методики выделения НК для последующего проведения ПЦР на выявление возбудителей ОРВИ, включая SARS-CoV-2. Методика представлена в приложении к инструкциям по применению наборов реагентов для ПЦР-исследований.

ДИАГНОСТИКА ОРВИВ ОДНОЙ ПРОБИРКЕ

Мультиплексный формат позволяет определять несколько аналитов в одной пробирке

SARS-CoV-2 / SARS-CoV

PУ № P3H 2020/9948

- Коронавирусы, подобные SARS-CoV
- ген *E* вируса SARS-CoV-2
- ген N вируса SARS-CoV-2

SARS-CoV Лайт

РУ № РЗН 2022/18677

SARS-CoV-2, гены Е и RdRp

Прямая ПЦР

Выявление PHK SARS-CoV-2 проводят **без этапа выделения** PHK из образцов! Денатурация образца, ОТ-ПЦР и амплификация проходят в **одной** пробирке

SARS-CoV-2 / Грипп Комплекс

PУ № P3H 2021/15157

- SARS-CoV-2, гены Е и N
- вирус гриппа А
- вирус гриппа В

SARS-CoV-2 / Грипп / RSV

PY № P3H 2023/19830

- RSV
- SARS-CoV-2, гены Е и N
- вирус гриппа А / вирус гриппа В*
- * Без дифференциации.

ВСЕ ТЕСТ-СИСТЕМЫ СООТВЕТСТВУЮТ РЕКОМЕНДАЦИЯМ ВОЗ:

Всемирная организация здравоохранения (ВОЗ) рекомендует использовать для выявления SARS-CoV-2 минимум две независимые мишени генома вируса для исключения ложноотрицательных результатов

Диагностическое тестирование на SARS-CoV-2. Временные рекомендации. 11 сентября 2020 г.

Вирус Гриппа А

РУ Nº РЗН 2024/22271

• Вирус гриппа А

Грипп A Комплекс H1N1pdm09/H3N2

РУ № РЗН 2023/21172

- Вирус гриппа A H1N1pdm09
- Вирус гриппа А Н3N2

Вирус Гриппа A H1N1pdm09

PY № P3H 2024/22273

Вирус гриппа А H1N1pdm09

Вирус Гриппа В

PУ № P3H 2024/22272

Вирус гриппа В

ГриппКомплекс А/В

РУ № РЗН 2023/19809

- Вирус гриппа А
- Вирус гриппа В

КОМПЛЕКСНЫЕ ТЕСТ-СИСТЕМЫ ДЛЯ РАСШИРЕННОГО СКРИНИНГА ОРВИ

ОРВИ КОМПЛЕКС

PУ № P3H 2022/17008

• 16 возбудителей ОРВИ

ПРИМЕР БЛАНКА РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ «ОРВИ КОМПЛЕКС»

Nº	Название исследования	Результаты
1	Influenza A virus	не выявлено
2	Коронавирус SARS-CoV-2, ген E, ген N	не выявлено
3	Influenza B virus	не выявлено
4	Human parainfluenza virus type 2	не выявлено
5	Human parainfluenza virus type 4	не выявлено
6	Human coronavirus 229E	не выявлено
7	Human bocavirus	не выявлено
8	Human rhinovirus	не выявлено
9	Human respiratory syncytial virus	не выявлено
10	Human coronavirus HKU1	не выявлено
11	Human adenovirus	не выявлено
12	Human coronavirus NL63	не выявлено
13	Human coronavirus OC43	ОБНАРУЖЕНО
14	Human parainfluenza virus type 3	не выявлено
15	Human parainfluenza virus type 1	не выявлено
16	Human metapneumovirus	не выявлено

Набор реагентов «ОРВИ Комплекс» может применяться для дифференциальной диагностики возбудителей ОРВИ, например, у пациентов, находящихся в стационаре или относящихся к группе риска.

КОМПЛЕКСНЫЕ ТЕСТ-СИСТЕМЫ ДЛЯ РАСШИРЕННОГО СКРИНИНГА ОРВИ

ОРВИ СКРИН

PУ № P3H 2023/19859

• 13 возбудителей ОРВИ

	ОРВИ Комплекс	ОРВИ Скрин
Респираторно-синтициальный вирус	✓	✓
Вирусы парагриппа 1, 2, 3, 4 типов	✓	✓
Риновирус	✓	✓
Аденовирус	✓	✓
Метапневмовирус	✓	✓
Коронавирусы НКU1, NL63, ОС43, 229E	✓	✓
Бокавирус	✓	✓
SARS-CoV-2	✓	
Вирус гриппа А	✓	
Вирус гриппа В	✓	

Набор реагентов «ОРВИ Скрин» может применяться для диагностики возбудителей ОРВИ после исключения инфицирования SARS-CoV-2 и вирусами гриппа A и B.

При ОРВИ возможно сочетание различных возбудителей (микст-инфекция), в том числе присоединение бактериальной инфекции.

БАКТЕРИАЛЬНЫЕ ИНФЕКЦИИ

У 10–30% пациентов с пневмонией выявляется смешанная или ко-инфекция, которая может быть вызвана ассоциацией различных бактериальных возбудителей либо их сочетанием с респираторными вирусами. Пневмония,

вызванная ассоциацией возбудителей, имеет тенденцию к более тяжелому течению и худшему прогнозу.

Отделения медицинских учреждений характеризуются особенным составом госпитальной флоры с преобладанием тех или иных видов микроорганизмов, зачастую имеющих устойчивость к одному или нескольким антибиотикам. Их передача может происходить от других пациентов или от медицинского персонала.

С точки зрения выбора режимов эмпирической АБТ при внебольничной пневмонии наибольшее клиническое значение представляет локальный мониторинг антибиотикорезистентности (АБР) S. pneumoniae и H. Influenzae. Требует также тщательного мониторинга распространение среди внебольничных энтеробактерий изолятов, вырабатывающих β-лактамазы расширенного спектра, что определяет их нечувствительность к цефалоспоринам III-IV поколения, а также появление в РФ устойчивости M. pneumoniae к макролидам.

Клинические рекомендации МЗ РФ «Внебольничная пневмония у взрослых», 2021 г.

□ При наличии признаков инфекционного осложнения рекомендуется проведение микробиологической диагностики (культуральное исследование) и/или молекулярно-генетической диагностики возбудителей нозокомиальных (ESKAPE-патогены, а также Streptococcus pneumoniae, Haemophilus influenzae type B, Legionella pneumophila) и грибковых инфекций.

Временные методические рекомендации профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19), версия 18, 2023 г.

У больных с жизнеугрожающими состояниями необходимо проводить скрининг молекулярно-генетическими методами (ПЦР) основных возбудителей нозокомиальных (ЕЅКАРЕ-патогены) и грибковых инфекций, а также выявление генов резистентности к бета-лактамным и гликопептидным антибиотикам: тес А (метициллину, оксациллину), tem, ctx-M-1, shv (пенициллинам и цефалоспоринам), оха-40-like, оха-48-like, оха-23-like, оха-51-like, imp, kpc, ges, ndm, vim (карбапенемам), van А\В (ванкомицину, тейкопланину).

Временные методические рекомендации профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19), версия 18, 2023 г.

Для эффективной диагностики нозокомиальных и внебольничных инфекций и своевременного назначения оптимальной терапии рекомендуется проводить ПЦР-исследование БакСкрин УПМ совместно с БакРезиста GLA.

БАКСКРИН УПМ

РУ № РЗН 2022/18191

Выявляет широкий спектр бактерий трех классов и определяет долю каждого возбудителя в препарате ДНК

БАКРЕЗИСТА GLA

PУ № P3H 2020/11171

Выявляет широкий спектр генов резистентности к глико-пептидным (G) и бета-лактамным (L) антибиотикам (A) у Грам- и Грам+ бактерий

РЕЗУЛЬТАТ:

Своевременное и точное определение возбудителя инфекции для назначения оптимальной терапии

БИОМАТЕРИАЛ ДЛЯ ИССЛЕДОВАНИЯ:

Биоматериал человека:

- мокрота
- моча
- фекалии
- аспираты
- экссудаты

- соскобы из:
 - дыхательных путей
 - урогенитального тракта
 - желудочно-кишечного тракта

Бактериальные культуры

РЕКОМЕНДУЕМОЕ ОБОРУДОВАНИЕ:

• амплификаторы детектирующие серии ДТ («ДНК-Технология»)

РЕКОМЕНДУЕМЫЕ НАБОРЫ ДЛЯ ВЫДЕЛЕНИЯ ДНК:

БакСкрин УПМ ПРОБА-НК-ПЛЮС

БакРезиста GLA

ПРОБА-НК ПРОБА-НК-ПЛЮС ПРОБА-ГС

ПРОБА-ГС-ПЛЮС ПРОБА-МЧ-РАПИД

БАКСКРИН УПМ

При исследовании биоматериала человека учитывается показатель **КВМ** — контроль взятия материала (наличие ДНК человека).

При исследовании бактериальных культур показатель KBM не учитывается.

ПРИМЕР БЛАНКА РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ «БАКСКРИН УПМ»

Nº	Наименование теста	Результат
1	ОБМ	ОБНАРУЖЕНО (6.9 Lg)
2	Achromobacter ruhlandii	не обнаружено
3	Achromobacter xylosoxidans	не обнаружено
4	Acinetobacter spp.	не обнаружено
5	Burkholderia spp.	не обнаружено
6	Enterobacterales	ОБНАРУЖЕНО (3.5 Lg, <0.1%)
6.1	Citrobacter freundii	не обнаружено
6.2	Citrobacter koseri	не обнаружено
6.3	Enterobacter cloacae	не обнаружено
6.4	Escherichia coli	не обнаружено
6.5	Klebsiella pneumoniae + Klebsialla oxytoca	не обнаружено
6.5.1	Klebsiella pneumoniae	не обнаружено
6.6	Morganella morganii	не обнаружено
6.7	Proteus spp.	не обнаружено
6.8	Serratia marcescens	не обнаружено
7	Enterococcus spp.	не обнаружено
8	Haemophilus spp.	ОБНАРУЖЕНО (5.3 Lg, 2.0-2.4%
8.1	Haemophilus influenzae	не обнаружено
9	Pseudomonas aeruginosa	не обнаружено
10	Staphylococcus spp.	ОБНАРУЖЕНО (3.8 Lg, <0.1%)
10.1	Staphylococcus aureus	ОБНАРУЖЕНО (4.0 Lg, 0.1-0.1%
11	Stenotrophomonas maltophilia	не обнаружено
12	Streptococcus spp.	ОБНАРУЖЕНО (5.6 Lg, 4-5%)
12.1	Streptococcus agalactiae	не обнаружено
12.2	Streptococcus pneumoniae	не обнаружено
12.3	Streptococcus pyogenes	не обнаружено

Исследование «БакСкрин УПМ» позволяет идентифицировать УПМ до заданного таксономического порядка и определить долю каждого возбудителя в препарате ДНК.

БАКРЕЗИСТА GLA

Два варианта исполнения:

БакРезиста GLA определяет широкий спектр генов резистентности к гликопептидным и бета-лактамным антибиотикам.

БакРезиста GLA Van/Mec — сокращенный вариант БакРезиста GLA.

ПРИМЕР БЛАНКА РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ «БАКРЕЗИСТА GLA»

Nº	Название исследования	Результаты
1	imp	не обнаружено
2	ОБМ	ОБНАРУЖЕНО (7.9 Lg)
3	oxa-51-like	не обнаружено
4	ctx-M-1	ОБНАРУЖЕНО (6.0 Lg)
5	tem	ОБНАРУЖЕНО (6.2 Lg)
6	vanA/B	не обнаружено
7	mecA	не обнаружено
8	oxa-48-like	не обнаружено
9	oxa-40-like	не обнаружено
10	vim	не обнаружено
11	kpc	не обнаружено
12	oxa-23-like	не обнаружено
13	ndm	не обнаружено
14	shv	ОБНАРУЖЕНО (3.2 Lg)
15	ges	не обнаружено

Заключение:

обнаружен(-ы) ген(-ы) резистентности к бета-лактамным антибиотикам. Возможно проявления устойчивости к пенициллинам, цефалоспаринам I-IV поколения, монобактамам у грамототицательных бактерий.

Заключение теста содержит информацию о наличии генов антибиотикорезистентности у бактерий, которая позволит сократить сроки для выбора оптимальной антибактериальной терапии.

По результатам исследования «БакРезиста GLA» можно провести полуколичественную оценку:

- определение доли резистентных микроорганизмов от общего количества бактериальной массы
- определение соотношения генов резистентности друг с другом

С более подробной информацией можно ознакомиться в информационных материалах, размещенных на сайте dna-technology.ru

OOO «ДНК-Технология» www.dna-technology.ru mail@dna-technology.ru +7 (495) 640-17-71 8 800 200 75 15 (Звонок по России бесплатный)