РЕЗУС-ФАКТОР

ПРЕНАТАЛЬНАЯ ДИАГНОСТИКА

НЕИНВАЗИВНАЯ ПРЕНАТАЛЬНАЯ ДИАГНОСТИКА

КОМПАНИЯ «ДНК-ТЕХНОЛОГИЯ» ПРЕДСТАВЛЯЕТ ЛИНЕЙКУ НАБОРОВ ДЛЯ НЕИНВАЗИВНОЙ ПРЕНАТАЛЬНОЙ ДИАГНОСТИКИ, ВКЛЮЧАЮЩУЮ НАБОРЫ «РЕЗУС-ФАКТОР ПЛОДА» И «ПОЛ ПЛОДА».

НАБОР РЕАГЕНТОВ ДЛЯ ВЫЯВЛЕНИЯ ГЕНА RHD ПЛОДА В КРОВИ МАТЕРИ МЕТОДОМ ПЦР В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ «РЕЗУС-ФАКТОР ПЛОДА»

РЗН 2017/5310 ОТ 30.01.2017 г.

Неинвазивная пренатальная молекулярно-генетическая диагностика

В акушерско-гинекологической практике часто возникает необходимость определения генотипа плода на ранних сроках беременности. До недавнего времени материал для таких исследований получали инвазивно, при хорион-, плацентобиопсиии в ходе амнио- и кордоцентеза. Риск самопроизвольного прерывания беременности в этом случае составляет 2—3%. Открытие наличия фетальных ДНК и РНК в материнской крови послужило основой для развития неинвазивной пренатальной диагностики, которая в отличие от прежних методов не представляет угрозы течению беременности, т.к. материалом для исследования служит кровь матери. Фетальные клетки, т.е. клетки плода, обнаруживаются в крови беременной женщины, их количество возрастает с увеличением срока гестации, зависит от состояния плаценты и особенностей течения беременности.

Начиная с 8 эмбриологической или 10 акушерской недель беременности методы **неинвазивной пренатальной молекулярно-генетической диагностики** позволяют проводить исследование фетальной ДНК с точностью 96—100% для прогнозирования развития резус-конфликта и гемолитической болезни плода.

Причины развития резус-конфликта

В системе резус различают пять антигенов. Наиболее иммуногенным является антиген D, присутствие которого на поверхности эритроцитов определяет положительный резус-фактор (Rh+). Доля резус-положительных лиц, носителей антигена D, в популяции составляет около 86%, а резус-отрицательных лиц (Rh-), не имеющих антигена D, — около 14%.

Течение беременности резус-положительным (Rh+) плодом у резус-отрицательных (Rh-) женщин часто осложняется развитием гемолитической болезни плода, связанной с трансплацентарным переносом эритроцитов плода в кровоток матери. 98% случаев гемолитической болезни новорожденных связаны с D-резусантигеном. Попадая в кровь Rh- матери, он вызывает образование специфических антител, которые проникают через плаценту, разрушают эритроциты плода, что влечет за собой развитие гемолитической болезни новорожденных. При раннем проявлении резус-конфликт может быть причиной преждевременных родов или самопроизвольного прерывания беременности. Сенсибилизация матери к D-антигену и риск развития резусконфликта возрастают с каждой последующей беременностью Rh+ плодом независимо от того, прервалась беременность или прошло родоразрешение.

Для выявления резус-конфликта беременной и плода применяется комплекс дорогостоящих и длительных клинических исследований, включающий:

- измерение уровня специфичных материнских антител к D-антигену плода;
- ◆ инвазивные мероприятия, основанные на получении плодного материала при хорион-, плацентобиопсии в ходе амнио- и кордоцентеза;
- допплерометрические исследования скоростей кровотока в средней мозговой артерии плода и его аорте.

Всем беременным резус-отрицательным женщинам проводят динамический контроль уровня антител к D-антигену плода. Отсутствие антител не гарантирует, что плод Rh-, т.к. даже при Rh+ у плода антитела у матери могут не вырабатываться по причине целостности плаценты или слабого иммунного ответа. В этой ситуации есть опасность, что резус-конфликт может возникнуть в любой момент беременности, а во время родов произойдет сенсибилизация матери.

Набор реагентов для выявления гена RHD плода в крови матери методом ПЦР в режиме реального времени «Резус-фактор плода» производства Компании «ДНК-Технология позволяет определить резус-статус плода на ранних сроках беременности у резус-отрицательной пациентки для своевременного расчета риска развития резус-конфликта и проведения профилактических мероприятий, может использоваться в рамках пренатального скрининга осложнений течения беременности у резус-отрицательных женщин.

Определение резус-фактора плода

Определение резус-фактора методом ПЦР в режиме реального времени заключается в выявлении гена RHD, кодирующего D-антиген. Традиционным серологическим методом исследуется наличие непосредственно D-антигена на эритроцитах крови.

Чаще всего отрицательный резус-фактор обусловлен полным отсутствием гена RHD. В этом случае резусфактор определяется как отрицательный серологическим методом и методом ПЦР, т. е. результаты исследований совпадают.

У 1% серологически резус-отрицательных лиц определяется наличие гена RHD. Это происходит в следующих случаях:

- ген RHD присутствует, и генотипически резус-фактор будет положительным, но в результате мутаций D-антиген не синтезируется и серологическим методом определяется отрицательный резусфактор;
- ген RHD присутствует полностью или частично, и **генотипически** резус-фактор будет **положитель- ным**, но в результате мутаций синтезируется измененный D-антиген, что серологически определяется или как **слабый** резус-фактор, или как **нестабильно положительный** резус-фактор.

Такие пациентки являются **генотипически** резус-положительными, и **определить резус-фактор плода** методом ПЦР **невозможно**. Однако наблюдение за течением беременности необходимо проводить по схеме ведения резус-отрицательных пациенток с возможностью развития резус-конфликта.

Исследование с использованием Набора реагентов для выявления гена RHD плода в крови матери методом ПЦР в режиме реального времени «Резус-фактор плода» («ДНК-Технология») впервые в практике отечественных разработок позволяет дифференцировать генотипически резус-положительных пациенток.

Показания к проведению исследования:

- ◆ ведение беременности у женщины с отрицательным резус-фактором для своевременного расчета риска развития резус-конфликта;
- отсутствие в крови беременной женщины с отрицательным резус-фактором антител к D-антигену плода перед профилактическим введением иммуноглобулина;
- хирургическое прерывание беременности у женщины с отрицательным резус-фактором с целью прогнозирования развития резус-конфликта при последующих беременностях.

Согласно Клиническим рекомендациям Российского общества акушеров-гинекологов (РОАГ) «Нормальная беременность», 2019 и «Резус-изоиммунизация. Гемолитическая болезнь плода», 2020 неинвазивное определения Rh-генотипа плода у резус-отрицательных беременных позволяет:

- а) снизить затраты на ведение беременности у неизоммунизированных женщин и обеспечить профилактическое применение антирезусной иммунопрофилактики только при резус-положительном генотипе плода;
- б) своевременно провести диагностические мероприятия и оценить риск развития гемолитической болезни уже на ранних сроках беременности;
- в) избежать непоказанных инвазивных диагностических и лечебных вмешательств у резус-изоиммунизированных женщин при определении резус-отрицательного генотипа плода — введение антирезусного иммуноглобулина Rho(D) в 28—30 недель не проводится.

При отсутствии возможности определения резус-генотипа плода беременность у резус-отрицательных неизоммунизированных женщин должна быть проведена, как беременность резус-положительным плодом.

Назначение набора

Набор реагентов для выявления гена RHD плода в крови матери методом ПЦР в режиме реального времени «Резус-фактор плода» предназначен для обнаружения гена RHD плода по двум экзонам (7 и 10) в крови беременной женщины с отрицательным резус-фактором методом полимеразной цепной реакции в режиме реального времени. Определение RHD по двум экзонам охватывает большую гетерогенную группу вариантов этого гена и способствует увеличению достоверности полученных результатов.

Технические характеристики и состав набора реагентов

Количество тестов в наборе	96 тестов
Формат реагентов	Раскапанный (12 стрипов по 8 пробирок)
Смесь для амплификации, запечатанная парафином	20 мкл в пробирке
Раствор Таq-полимеразы	2 пробирки — 480 мкл
Масло минеральное	2 пробирки — 960 мкл
Положительный контрольный образец «К+»	1 пробирка — 75 мкл
Материал для анализа	Периферическая кровь
Срок годности	12 месяцев
Температура хранения	+2 +8 °C

Технология: полимеразная цепная реакция с детекцией результатов в режиме реального времени; качественный мультиплексный анализ.

Реагенты для выделения ДНК:

ПРОБА-НК-ФЕТ (РЗН 2017/5309 от 30.01.2017 г.) – комплект реагентов производства Компании «ДНК-Технология» разработан специально для выделения фетальной ДНК (ДНК плода) из крови матери. Рассчитан для выделения ДНК из 50 анализируемых образцов (включая отрицательные контрольные образцы).

ВНИМАНИЕ! При использовании наборов для выделения фетДНК других производителей могут быть получены некорректные результаты.

Особенности набора:

- ◆ Одновременная детекция (мультиплексный анализ) в одной пробирке определяется несколько ДНКмишеней: наличие двух экзонов гена RHD (7 и 10) и геномной ДНК человека (КВМ).
- ◆ КВМ используется для анализа качества выделения и позволяет определить, достаточно ли полученного количества ДНК для исследования.
- ◆ Так как фетальная ДНК находится в крови беременной женщины в минимальном количестве, анализ каждого образца ДНК необходимо проводить в дублях.

Для проведения анализа необходимы следующие дополнительные расходные материалы и оборудование:

- штатив и насадка на микроцентрифугу (вортекс) для стрипованного пластика;
- ◆ охлаждающий штатив обязательно на этапе выделения ДНК!

Оборудование, необходимое для проведения анализа:

приборы серии ДТ производства ООО «НПО ДНК-Технология» (ДТлайт, ДТпрайм, ДТ-96) (рис. 1).

Рис. 1. Приборы производства компании «ДНК-Технология»

Уникальные технические характеристики приборов позволяют существенно сократить общее время проведения анализа. Это значительно экономит время исследования и обеспечивает высокую пропускную способность лаборатории.

Программное обеспечение

Компанией «ДНК-Технология» разработано специализированное программное обеспечение к набору «Резус-фактор плода», позволяющее получать результаты исследования в удобной и наглядной форме (рис. 2).

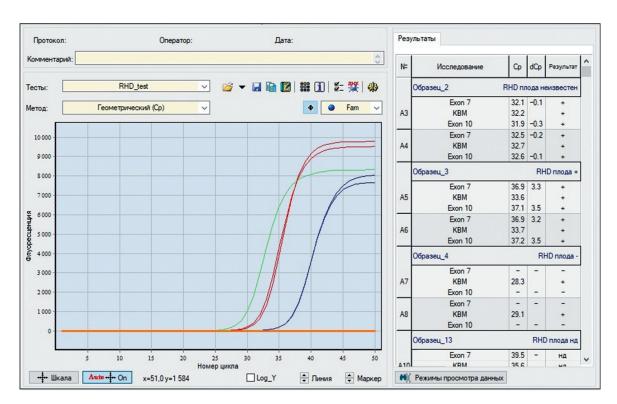


Рис. 2. Результаты анализа оптических измерений

Результат исследования указан в верхней графе таблицы, справа, рядом с идентификатором образца.

Результат исследования для каждого образца определяется программным обеспечением **автоматически** с учетом значений Ср КВМ (канал Hex) и Δ Ср по каналам специфики (каналы Fam и Rox) в совокупности по дублям для каждого образца.

В бланк ответа автоматически включается заключение, соответствующее полученному результату.

Варианты результатов исследования и вид соответствующих бланков с интерпретацией и заключением

А. Результат исследования «RHD плода -»

	Образец_4	RHD плода -		
	Exon 7	_	_	_
A7	KBM	28,3		+
	Exon 10	_	_	_
	Exon 7	_	_	_
A8	KBM	29,1		+
	Exon 10	_	_	_

Пренатальная диагностика. Резус – фактор.

Дата Номер пробирки Ф.И.О. пациента Пол Возраст Организация Врач Примечание

Логотип

Информация о лаборатории

Идентификатор образца: Образец_4

Название исследования	Результат	Интерпретация результата
Выявление гена резус — фактор (RHD) плода	Не выявлен	Резус-фактор плода: генотипически отрицательный

Внимание: Данное исследование проводится только у серологически резус-отрицательной пациентки при сроке беременности более 8 недель.

Заключение:

Развитие резус-конфликта маловероятно.

Точность результата зависит от количества ДНК плода, обнаруживаемой в материнской плазме. Данная величина обусловлена состояние плаценты и возрастает с увеличением срока беременности.

Определение резус-фактора методом ПЦР в режиме реального времени заключается в обнаружении гена RHD плода, кодирующего D-антиген, в крови матери.

Традиционный серологический метод основан на выявлении непосредственно D-антигена на эритроцитах крови.

Чаще всего отрицательный резус-фактор обусловлен полным отсутствием гена RHD и, как следствие, отсутствием D-антигена. В этом случае серологическим методом и методом ПЦР резус-фактор определяется как отрицательный, т.е. результаты исследований совпадают.

Согласно литературным данным, в редчайших случаях (менее 0,1%) встречается такой вариант гена RHD, когда резус-фактор плода генотипически определяется как отрицательный, а после рождения ребенка серологически может выявляться как слабоположительный. В этом случае в период беременности возможно развитие резус-конфликта слабой выраженности.

Б. Результат исследования «RHD плода +»

	Образец_3	RHD плода +		
	Exon 7	36,9	3,3	+
A5	KBM	33,6		+
	Exon 10	37,1	3,5	+
	Exon 7	36,9	3,2	+
A6	KBM	33,7		+
	Exon 10	37,2	3,5	+

Пренатальная диагностика. Резус – фактор.

Логотип

Информация о лаборатории

Дата

Номер пробирки

Ф.И.О. пациента

Пол

Возраст Организация

Врач

Примечание

Идентификатор образца:Образец_3

Название исследования	Результат	Интерпретация результата
Выявление гена резус — фактор (RHD) плода	Выявлен	Резус-фактор плода: генотипически положительный

Внимание: Данное исследование проводится только у серологически резус-отрицательной пациентки при сроке беременности более 8 недель.

Заключение:

Возможно развитие резус-конфликта.

Точность результата зависит от количества ДНК плода, обнаруживаемой в материнской плазме. Данная величина обусловлена состоянием плаценты и возрастает с увеличением срока беременности.

Определение резус-фактора методом ПЦР в режиме реального времени заключается в обнаружении гена RHD плода, кодирующего D-антиген, в крови матери.

Традиционный серологический метод основан на выявлении непосредственно D-антигена на эритроцитах крови.

Согласно литературным данным, в 99% исследований результаты, полученные серологическим методом и методом ПЦР, совпадают. Однако у 1% генотипически резус-положительных лиц серологическим методом может определяться отрицательный резус-фактор, что связано с мутациями в гене RHD и, как следствие, отсутствием или функциональной неполноценностью D-антигена. Поэтому после родов рекомендуется уточнить резус-фактор ребенка серологическим методом.

В. Результат исследования «RHD плода неизвестен» выдается в случае, если пациентка генотипически резус-положительная

	Образец_2	RHD плода неизвестен		
	Exon 7	32,1	-0,1	+
A3	KBM	32,2		+
	Exon 10	31,9	-0,3	+
	Exon 7	32,5	-0,2	+
A4	KBM	32,7		+
	Exon 10	32,6	-0,1	+

Пренатальная диагностика. Резус - фактор.

Дата Номер пробирки Ф.И.О. пациента Пол Возраст Организация Врач Примечание

Логотип Информация о лаборатории

Идентификатор образца: Образец_2

Название исследования	Результат	Интерпретация результата
Выявление гена резус — фактор (RHD) плода	Выявить невозможно	У матери обнаружен ген RHD. Выявить ген RHD плода данным методом невозможно.

Внимание: Данное исследование проводится только у серологически резус-отрицательной пациентки при сроке беременности более 8 недель.

Заключение:

Нельзя исключить возможность развития резус-конфликта.

Точность результата зависит от количества ДНК плода, обнаруживаемой в материнской плазме. Данная величина обусловлена состояние плаценты и возрастает с увеличением срока беременности.

Определение резус-фактора методом ПЦР в режиме реального времени заключается в обнаружении гена RHD плода, кодирующего D-антиген, в крови матери.

Традиционный серологический метод основан на выявлении непосредственно D-антигена на эритроцитах крови.

Чаще всего отрицательный резус-фактор обусловлен полным отсутствием гена RHD и, как следствие, отсутствием D-антигена. В этом случае серологическим методом и методом ПЦР резус-фактор определяется как отрицательный, т.е. результаты исследований разными методами совпадают.

Однако, согласно литературным данным, у 1% серологически резус-отрицательных лиц, как в данном случаем, присутствует мутированный ген RHD, определяющий генотипически положительный резус-фактор при отсутствии или функциональной неполноценности D-антигена. При наличии такого измененного гена у матери выявить ген RHD плода методом ПЦР невозможно, но при беременности серологически резус-положительном плодом может происходить развитие резус-конфликта.

Г. Сомнительный или недостоверный результат

При получении сомнительных или недостоверных результатов справа от идентификатора образца будет указано соответственно (?) или (нд).

Недостоверный результат

	Образец_13	RHD плода нд		
	Exon 7	39,5	_	нд
A10	KBM	35,6		нд
	Exon 10	39,5	_	нд
	Exon 7	39,1	_	нд
B10	KBM	35,3		нд
	Exon 10	40,7	_	нд

Пренатальная диагностика. Резус - фактор.

Дата

Номер пробирки Ф.И.О. пациента

Пол

Возраст Организация

Врач

Примечание

Идентификатор образца: Образец_13

	Логотип	
ากผล	има о паборат	กานเก

Информация о лаборатории

Название исследования	Результат	Интерпретация результата
Выявление гена резус — фактор (RHD) плода	RHD плода нд	Необходимо повторно сдать кровь.

Внимание: Данное исследование проводится только у серологически резус-отрицательной пациентки при сроке беременности более 8 недель.

Заключение:

Таблица 1. Принципы определения сомнительных и недостоверных результатов ПЦР

Параметры	Варианты результатов			
исследования	1	2	3	
Результат по каналу Fam (Fam Cp)	Cp≤41	Не учитывается	Не учитывается	
Результат по каналу Нех (Нех Ср)	Cp≤35	Ср>35 или не указан	Cp≤35	
Результат по каналу Rox (Rox Cp)	Cp≤41	Не учитывается	Не учитывается	
∆Ср ((Fam Cp) минус (Hex Cp))	1,0-1,9	Не учитывается	Не учитывается	
△Ср ((Rox Cp) минус (Hex Cp))	1,0-1,9	Не учитывается	Не учитывается	
Результат амплификации	+	нд	Не совпадает по дублям	
Результат исследования (ген RHD плода)	?	нд	нд	
Интерпретация результата	Сомнительный результат*	Недостоверный результат **	Недостоверный результат***	

Примечание:

^{*} Необходимо повторно провести ПЦР, либо выделить ДНК и провести ПЦР для этого образца, либо взять клинический материал у пациента (выполняется последовательно).

^{**} Необходимо провести повторное выделение ДНК и постановку ПЦР этого образца либо повторно взять клинический материал у пациента (выполняется последовательно).

^{***} Необходимо повторно провести ПЦР для этого образца.

Преимущества наборов для неинвазивной пренатальной диагностики производства компании «ДНК-Технология» по сравнению с аналогами

- Исследование с использованием Набора реагентов для выявления гена RHD плода в крови матери методом ПЦР в режиме реального времени «Резус-фактор плода» («ДНК-Технология») впервые в практике отечественных разработок позволяет дифференцировать генотипически резус-положительных пациенток.
- Единая программа амплификации и специализированное программное обеспечение позволяют объединять в одном протоколе два вида исследования («Резус-фактор плода» и «Пол плода») при сохранении независимой автоматической интерпретации результатов, что существенно сокращает время, необходимое для проведения анализа, и увеличивает пропускную способность лаборатории.
- Небольшой объем образца крови 4,5 мл достаточен для проведения полного комплекса исследований с использованием наборов реагентов «Резус-фактор плода» и «Пол плода».
- Однократное центрифугирование крови для получения плазмы снижает риск контаминации образцов и сокращает время работы лаборанта.
- Раскапанный формат наборов не требует дополнительных манипуляций по составлению реакционных смесей, что сокращает время работы лаборанта и снижает риск контаминации.
- Стабильность компонентов наборов реагентов обеспечивает длительное хранение (9 месяцев) при +2 ... +8 °C и транспортировку в течение 72 часов при температуре от 0 до +24 °C.
- Минимальное количество стандартного расходного материала и дополнительного оборудования для проведения полного цикла ПЦР-анализа (в том числе, отсутствие необходимости использования колонок и пробирок объемом 5 мл).
- Наличие КВМ в каждой пробирке позволяет оценить качество прохождения этапов выделения и амплификации, а также достаточность количества выделенной ДНК для исследования, что в совокупности обеспечивает существенное снижение риска получения неверных результатов.

